Receding Horizon Control of HIV

This paper describes a model of the immunologic response of the human immunodeficiency virus (HIV) in individuals. It then illustrates how a Receding Horizon Control (RHC) methodology can be used to drive the system to a stable equilibrium in which a strong immune response controls the viral load in the absence of drug treatment. We also illustrate how this feedback methodology can overcome unplanned treatment interruptions, inaccurate or incomplete data and imperfect model specification. We consider how ideas from stochastic estimation can be used in conjunction with RHC to create a robust treatment methodology. We then consider the performance of this methodology over random simulations of the previously considered clinical conditions. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  G. M. Ortiz,et al.  Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection , 2000, AIDS.

[2]  R. Zurakowski,et al.  An output-feedback MPC-based scheduling method for enhancing immune response to HIV , 2006, 2006 American Control Conference.

[3]  T. A. Badgwell,et al.  An Overview of Industrial Model Predictive Control Technology , 1997 .

[4]  Chung Choo Chung,et al.  Optimal Scheduling of Drug Treatment for HIV Infection : Continuous Dose Control and Receding Horizon Control , 2003 .

[5]  Alan S Perelson,et al.  HIV-1 infection and low steady state viral loads , 2002, Bulletin of mathematical biology.

[6]  Winston Garira,et al.  Optimal Control of Combined Therapy in a Single Strain HIV-1 Model , 2005 .

[7]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[8]  Harvey Thomas Banks,et al.  A state‐dependent Riccati equation‐based estimator approach for HIV feedback control , 2006 .

[9]  John M. Neuberger,et al.  A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems , 1998 .

[10]  H T Banks,et al.  Estimation and Prediction With HIV-Treatment Interruption Data , 2007, Bulletin of mathematical biology.

[11]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[12]  Ryan Zurakowski,et al.  A model predictive control based scheduling method for HIV therapy. , 2006, Journal of theoretical biology.

[13]  A.R. Teel,et al.  HIV treatment scheduling via robust nonlinear model predictive control , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[14]  S. Lenhart,et al.  OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL , 1998 .

[15]  Harvey Thomas Banks,et al.  HIV model analysis under optimal control based treatment strategies , 2008 .

[16]  Brian Michael Adams Non-parametric Parameter Estimation and Clinical Data Fitting with a Model of HIV Infection , 2005 .

[17]  M. Araki,et al.  Two-Degree-of-Freedom PID Controllers , 2003 .

[18]  Greg Welch,et al.  Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .

[19]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[20]  Shuhua Hu,et al.  A comparison of nonlinear filtering approaches in the context of an HIV model. , 2010, Mathematical biosciences and engineering : MBE.

[21]  M. Nowak,et al.  Specific therapy regimes could lead to long-term immunological control of HIV. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Gmira,et al.  Self similar solutions of generalized Burgers equation. , 2005 .

[23]  B. Adams,et al.  HIV dynamics: Modeling, data analysis, and optimal treatment protocols , 2005 .

[24]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[25]  Harvey Thomas Banks,et al.  Model fitting and prediction with HIV treatment interruption data , 2005 .

[26]  Masayuki Hino,et al.  Evaluation of an automated hematologyanalyzer (CELL-DYN 4000) for counting CD4+ T helper cells at low concentrations. , 2005, Annals of clinical and laboratory science.

[27]  R. Culshaw,et al.  REVIEW OF HIV MODELS: THE ROLE OF THE NATURAL IMMUNE RESPONSE AND IMPLICATIONS FOR TREATMENT , 2004 .

[28]  John Andrew David,et al.  Optimal Control, Estimation, and Shape Design: Analysis and Applications , 2007 .

[29]  Hem Raj Joshi,et al.  Optimal control of an HIV immunology model , 2002 .

[30]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[31]  Richard M. Stanley Optimal Estimation With an Introduction to Stochastic Control , 1988 .

[32]  B. Adams,et al.  Dynamic multidrug therapies for hiv: optimal and sti control approaches. , 2004, Mathematical biosciences and engineering : MBE.

[33]  Shigui Ruan,et al.  Mathematical Biology Digital Object Identifier (DOI): , 2000 .

[34]  Kazufumi Ito,et al.  Asymptotic Properties of Receding Horizon Optimal Control Problems , 2002, SIAM J. Control. Optim..