An efficient implementation of the network simplex method

This paper describes an efficient implementation of the network simplex method for solving large sparse minimum-cost network flow problems. This is a single-phase implementation which employs an initial spanning tree of all artificial edges, a gradual penalty method for reducing infeasibilities and a sample pricing strategy which does not require adjacency-ordered edge lists. Data structures, algorithmic details and computational experience with a set of generated problems are presented. For the problems tested, the present implementation is found to be more efficient than other available implementations of the network simplex and primal-dual methods.

[1]  D. R. Fulkerson,et al.  Computation of maximal flows in networks , 1955 .

[2]  B. Gassner Cycling in the transportation problem , 1964 .

[3]  G. Dantzig UPPER BOUNDS, SECONDARY CONSTRAINTS, AND BLOCK TRIANGULARITY IN LINEAR PROGRAMMING , 1955 .

[4]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[5]  Thomas L. Magnanti,et al.  Implementing primal-dual network flow algorithms , 1976 .

[6]  A. Orden The Transhipment Problem , 1956 .

[7]  Ellis L. Johnson,et al.  Networks and Basic Solutions , 1966, Oper. Res..

[8]  Ellis Horowitz,et al.  Fundamentals of Computer Algorithms , 1978 .

[9]  W. H. Cunningham,et al.  Theoretical Properties of the Network Simplex Method , 1979, Math. Oper. Res..

[10]  D. Bertsekas,et al.  Relaxation methods for minimum cost network flow problems , 1983 .

[11]  John M. Mulvey,et al.  Testing of a large-scale network optimization program , 1978, Math. Program..

[12]  Gerald L. Thompson,et al.  Accelerated Algorithms for Labeling and Relabeling of Trees, with Applications to Distribution Problems , 1972, JACM.

[13]  William H. Cunningham,et al.  A network simplex method , 1976, Math. Program..

[14]  D. R. Fulkerson,et al.  An Out-of-Kilter Method for Minimal-Cost Flow Problems , 1960 .

[15]  Donald Goldfarb,et al.  A practicable steepest-edge simplex algorithm , 1977, Math. Program..

[16]  Gerald G. Brown,et al.  Design and Implementation of Large-Scale Primal Transshipment Algorithms , 1976 .

[17]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[18]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[19]  Darwin Klingman,et al.  Implementation and Computational Study on an In-Core, Out-of-Core Primal Network Code , 1976, Oper. Res..

[20]  Maurice Snowdon,et al.  Network Flow Programming , 1980 .

[21]  R. V. Helgason,et al.  Algorithms for network programming , 1980 .

[22]  M. Klein A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems , 1966 .

[23]  Fred W. Glover,et al.  Implementation and computational comparisons of primal, dual and primal-dual computer codes for minimum cost network flow problems , 1974, Networks.

[24]  S. N. Maheshwari,et al.  An O(|V|³) Algorithm for Finding Maximum Flows in Networks , 1978, Inf. Process. Lett..

[25]  Fred Glover,et al.  A Computation Study on Start Procedures, Basis Change Criteria, and Solution Algorithms for Transportation Problems , 1974 .

[26]  Fred W. Glover,et al.  An improved version of the out-of-kilter method and a comparative study of computer codes , 1974, Math. Program..

[27]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[28]  Fred W. Glover,et al.  Past, present and future of large scale transshipment computer codes and applications , 1975, Comput. Oper. Res..

[29]  John M. Mulvey,et al.  Pivot Strategies for Primal-Simplex Network Codes , 1978, JACM.

[30]  Darwin Klingman,et al.  NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems , 1974 .

[31]  Norman Zadeh,et al.  A bad network problem for the simplex method and other minimum cost flow algorithms , 1973, Math. Program..

[32]  J. A. Tomlin,et al.  Minimum-Cost Multicommodity Network Flows , 1966, Oper. Res..