Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework

We employed a combination of theoretical and experimental techniques to study the metal–organic framework (MOF)-mechanics central to the paddle-wheel Cu3(BTC)2 porous structure, commonly designated as HKUST-1. Lattice dynamics of the hybrid framework at below 18 THz were measured by means of Raman and synchrotron far-infrared spectroscopy, and systematically correlated to collective vibrational modes computed from ab initio density functional theory (DFT). We have identified a number of intriguing low-energy framework vibration mechanisms, reminiscent of the ‘trampoline-like’ deformations and new oscillatory motions associated with Cu paddle-wheel ‘molecular rotors’. The three independent single-crystal elastic constants of the HKUST-1 (i.e. C11, C12 and C44) were calculated using the DFT approach, taking into account the effects of dispersion corrections. We established the full elasticity solutions accompanying detailed deformation mechanisms that control its anisotropic mechanical properties, ranging from the Young's and shear moduli to linear compressibility and Poisson's ratio. Our results support the notion that the co-existance of soft modes and intrinsic shear distortions connected to the THz lattice dynamics dictate a range of anomalous elastic phenomena, for example: negative Poisson's ratio (auxeticity), negative thermal expansion (NTE), and exceedingly low shear moduli properties.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  V. Falk,et al.  Towards industrial use of metal-organic framework: Impact of shaping on the MOF properties , 2014 .

[3]  A. Goodwin,et al.  Acoustic phonons and negative thermal expansion in MOF-5. , 2014, Physical chemistry chemical physics : PCCP.

[4]  Alex J. Zelhofer,et al.  Resilient 3D hierarchical architected metamaterials , 2015, Proceedings of the National Academy of Sciences.

[5]  A. Strachan,et al.  Mechanisms of Plastic Deformation of Metal–Organic Framework-5 , 2015 .

[6]  U. Waghmare,et al.  Stacking Faults and Mechanical Behavior beyond the Elastic Limit of an Imidazole-Based Metal Organic Framework: ZIF-8. , 2013, The journal of physical chemistry letters.

[7]  Jin‐Chong Tan,et al.  The effect of pressure on Cu-btc: framework compression vs. guest inclusion. , 2012, Chemical communications.

[8]  Kenneth E. Evans,et al.  ElAM: A computer program for the analysis and representation of anisotropic elastic properties , 2010, Comput. Phys. Commun..

[9]  R. Marshall,et al.  Single-Crystal to Single-Crystal Mechanical Contraction of Metal-Organic Frameworks through Stereoselective Postsynthetic Bromination. , 2015, Journal of the American Chemical Society.

[10]  S. Moggach,et al.  Structural studies of metal-organic frameworks under high pressure. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[11]  Ruben Gatt,et al.  Hierarchical Auxetic Mechanical Metamaterials , 2015, Scientific Reports.

[12]  Bartolomeo Civalleri,et al.  Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study , 2006 .

[13]  D. Vos,et al.  Improving the mechanical stability of zirconium-based metal–organic frameworks by incorporation of acidic modulators , 2015 .

[14]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[15]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[16]  Russell K. Feller,et al.  Structural diversity and chemical trends in hybrid inorganic-organic framework materials. , 2006, Chemical communications.

[17]  M. Allendorf,et al.  MOF-based electronic and opto-electronic devices. , 2014, Chemical Society reviews.

[18]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[19]  Kristopher J Harris,et al.  Mechanically Interlocked Linkers inside Metal-Organic Frameworks: Effect of Ring Size on Rotational Dynamics. , 2015, Journal of the American Chemical Society.

[20]  A. Cheetham,et al.  Relating mechanical properties and chemical bonding in an inorganic-organic framework material: a single-crystal nanoindentation study. , 2009, Journal of the American Chemical Society.

[21]  P. Ugliengo,et al.  B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals , 2008 .

[22]  Bartolomeo Civalleri,et al.  Metal–Organic Frameworks and Hybrid Materials: From Fundamentals to Applications , 2015 .

[23]  Jin‐Chong Tan,et al.  Mechanical properties of zeolitic metal-organic frameworks , 2015 .

[24]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[25]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[26]  Mark Peplow,et al.  The tiniest Lego: a tale of nanoscale motors, rotors, switches and pumps , 2015, Nature.

[27]  P. Sozzani,et al.  Fast molecular rotor dynamics modulated by guest inclusion in a highly organized nanoporous organosilica. , 2010, Angewandte Chemie.

[28]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[29]  M. Gutowski,et al.  Communication: Remarkable electrophilicity of the oxalic acid monomer: an anion photoelectron spectroscopy and theoretical study. , 2014, The Journal of chemical physics.

[30]  M. Allendorf,et al.  Crystal engineering, structure–function relationships, and the future of metal–organic frameworks , 2015 .

[31]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[32]  P. Fleury The Effects of Soft Modes on the Structure and Properties of Materials , 1976 .

[33]  Y. Yue,et al.  Hybrid glasses from strong and fragile metal-organic framework liquids , 2014, Nature Communications.

[34]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[35]  A. Cheetham,et al.  Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. , 2013, Chemistry.

[36]  R. Orlando,et al.  Elastic properties of six silicate garnet end members from accurate ab initio simulations , 2014, Physics and Chemistry of Minerals.

[37]  S. M. F. Vilela,et al.  Multifunctional metal-organic frameworks: from academia to industrial applications. , 2015, Chemical Society Reviews.

[38]  Hussein A. Younus,et al.  Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. , 2015, Chemical Society reviews.

[39]  R. Orlando,et al.  Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. , 2013, The Journal of chemical physics.

[40]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[41]  Bartolomeo Civalleri,et al.  Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code , 2009, Comput. Phys. Commun..

[42]  A. Cheetham,et al.  Research Update: Mechanical properties of metal-organic frameworks – Influence of structure and chemical bonding , 2014 .

[43]  T. Sui,et al.  Fine-scale tribological performance of zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes , 2014 .

[44]  W. Marsden I and J , 2012 .

[45]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[46]  Bartolomeo Civalleri,et al.  Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs. ZIF-zni , 2015 .

[47]  V. K. Peterson,et al.  Local vibrational mechanism for negative thermal expansion: a combined neutron scattering and first-principles study. , 2010, Angewandte Chemie.

[48]  J. Caro,et al.  Are MOF membranes better in gas separation than those made of zeolites , 2011 .

[49]  G. Kearley,et al.  Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations. , 2013, Dalton transactions.

[50]  Andrew L. Goodwin,et al.  Supramolecular mechanics in a metal–organic framework , 2012 .

[51]  P. Sozzani,et al.  Molecular rotors in porous organic frameworks. , 2014, Angewandte Chemie.

[52]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[53]  Abhijeet K. Chaudhari,et al.  Multifunctional Supramolecular Hybrid Materials Constructed from Hierarchical Self-Ordering of In Situ Generated Metal-Organic Framework (MOF) Nanoparticles , 2015, Advanced materials.

[54]  Gang Liu,et al.  Metal-Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. , 2015, Small.

[55]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[56]  A. Cheetham,et al.  Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture. , 2014, Journal of the American Chemical Society.

[57]  Jin‐Chong Tan,et al.  Mixed-matrix membranes of zeolitic imidazolate framework (ZIF-8)/Matrimid nanocomposite: Thermo-mechanical stability and viscoelasticity underpinning membrane separation performance , 2016 .

[58]  N. Casati,et al.  Pressure-induced oversaturation and phase transition in zeolitic imidazolate frameworks with remarkable mechanical stability. , 2015, Dalton transactions.

[59]  Jin‐Chong Tan,et al.  Micromechanical Behavior of Polycrystalline Metal–Organic Framework Thin Films Synthesized by Electrochemical Reaction , 2015 .

[60]  A. Authier,et al.  Physical properties of crystals , 2007 .

[61]  U. Müller,et al.  The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications , 2012 .

[62]  Jin‐Chong Tan,et al.  Identifying the role of terahertz vibrations in metal-organic frameworks: from gate-opening phenomenon to shear-driven structural destabilization. , 2014, Physical review letters.

[63]  A. Cheetham,et al.  Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks , 2010, Proceedings of the National Academy of Sciences.

[64]  P. Jain,et al.  Influence of ligand field stabilization energy on the elastic properties of multiferroic MOFs with the perovskite architecture. , 2012, Dalton transactions.

[65]  Lattice dynamics of metal-organic frameworks: Neutron inelastic scattering and first-principles calculations , 2006, cond-mat/0609222.

[66]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[67]  François-Xavier Coudert,et al.  Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? , 2012, Physical review letters.

[68]  K. Chapman,et al.  Guest-dependent high pressure phenomena in a nanoporous metal-organic framework material. , 2008, Journal of the American Chemical Society.

[69]  Joseph N. Grima,et al.  Mechanical metamaterials: Materials that push back. , 2012, Nature materials.

[70]  R. Orlando,et al.  Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. , 2013, The Journal of chemical physics.

[71]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[72]  V. K. Peterson,et al.  Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. , 2008, Angewandte Chemie.

[73]  A. Cheetham,et al.  Guest-dependent mechanical anisotropy in pillared-layered soft porous crystals – a nanoindentation study , 2014 .

[74]  Anthony K. Cheetham,et al.  Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships. , 2011, Chemical Society reviews.

[75]  S. Kitagawa,et al.  Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach. , 2015, Journal of the American Chemical Society.

[76]  Jan Fransaer,et al.  Electrochemical Film Deposition of the Zirconium Metal–Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap , 2015 .

[77]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[78]  Bartolomeo Civalleri,et al.  Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework. , 2012, Physical review letters.

[79]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[80]  W. Zhou,et al.  Structural stability and elastic properties of prototypical covalent organic frameworks , 2010 .

[81]  Matthew R Ryder,et al.  Explaining the mechanical mechanisms of zeolitic metal-organic frameworks: revealing auxeticity and anomalous elasticity. , 2016, Dalton transactions.

[82]  Seth M. Cohen,et al.  Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy , 2014, Proceedings of the National Academy of Sciences.

[83]  Christopher H. Hendon,et al.  Ligand design for long-range magnetic order in metal-organic frameworks. , 2014, Chemical communications.

[84]  R. Orlando,et al.  Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set , 2004, J. Comput. Chem..

[85]  F. Meneau,et al.  Identifying Vibrations That Destabilize Crystals and Characterize the Glassy State , 2005, Science.

[86]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[87]  Matthew R. Ryder,et al.  Nanoporous metal organic framework materials for smart applications , 2014 .

[88]  F. Kapteijn,et al.  Experimental Evidence of Negative Linear Compressibility in the MIL-53 Metal-Organic Framework Family. , 2015, CrystEngComm.