Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition

[1]  J. O. Rawlings,et al.  Applied Regression Analysis: A Research Tool , 1988 .

[2]  Vitor Sousa,et al.  A simplified technical decision support tool for the asset management of sewer networks. , 2009 .

[3]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[4]  Richard N. Palmer,et al.  Expert System for Prioritizing the Inspection of Sewers: Knowledge Base Formulation and Evaluation , 2002 .

[5]  Yuqing. Yang Statistical models for assessing sewer infrastructure inspection requirements , 1999 .

[6]  Yehuda Kleiner,et al.  Scheduling Inspection and Renewal of Large Infrastructure Assets , 2001 .

[7]  Tarek Zayed,et al.  Structural Condition Assessment of Sewer Pipelines , 2010 .

[8]  Samuel T. Ariaratnam,et al.  Assessment of Infrastructure Inspection Needs Using Logistic Models , 2001 .

[9]  Richard Fenner,et al.  A decision support model for the rehablitation of “non-critical” sewers , 1999 .

[10]  Viv Bewick,et al.  Statistics review 14: Logistic regression , 2005, Critical care.

[11]  Tarek Zayed,et al.  Sewer Pipeline Operational Condition Prediction using Multiple Regression , 2007 .

[12]  Xxyyzz,et al.  Existing Sewer Evaluation and Rehabilitation , 2010 .

[13]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[14]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[15]  F H L R Clemens,et al.  Probabilistic modeling of sewer deterioration using inspection data. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[16]  Samuel T. Ariaratnam,et al.  Innovative method for assessment of underground sewer pipe condition , 2006 .

[17]  Tarek Zayed,et al.  Infrastructure Condition Prediction Models for Sustainable Sewer Pipelines , 2008 .

[18]  Tarek Zayed,et al.  Structural Condition Models for Sewer Pipeline , 2007 .

[19]  Dulcy M. Abraham,et al.  CHALLENGING ISSUES IN MODELING DETERIORATION OF COMBINED SEWERS , 2001 .

[20]  Rehan Sadiq,et al.  Modeling failure risk in buried pipes using fuzzy Markov deterioration process , 2019 .

[21]  John Mashford,et al.  Prediction of Sewer Condition Grade Using Support Vector Machines , 2011, J. Comput. Civ. Eng..

[22]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[23]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[24]  Jon Røstum,et al.  Statistical modelling of pipe failures in water networks , 2000 .

[25]  Theodore T. Allen,et al.  Introduction to Engineering Statistics and Six Sigma: Statistical Quality Control and Design of Experiments and Systems , 2006 .

[26]  Dulcy M. Abraham,et al.  Estimating Transition Probabilities in Markov Chain-Based Deterioration Models for Management of Wastewater Systems , 2006 .

[27]  Joaquim Marques de Sá,et al.  Applied Statistics Using SPSS, STATISTICA, MATLAB and R , 2003 .

[28]  Richard N. Palmer,et al.  Knowledge Acquisition and Validation of an Expert System for Prioritizing the Inspection of Sewers , 2000 .

[29]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[30]  Douglas C. Montgomery,et al.  Applied Statistics and Probability for Engineers, Third edition , 1994 .

[31]  Brad Warner,et al.  Understanding Neural Networks as Statistical Tools , 1996 .

[32]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[33]  J M Yan,et al.  Fuzzy Approach for Pipe Condition Assessment , 2003 .

[34]  J. Hair Multivariate data analysis , 1972 .

[35]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[36]  Luigi Berardi,et al.  Modelling sewer failure by evolutionary computing , 2006 .

[37]  J. P. Davies,et al.  The structural condition of rigid sewer pipes : a statistical investigation , 2001 .

[38]  Rehan Sadiq,et al.  Modelling the deterioration of buried infrastructure as a fuzzy Markov process , 2006 .

[39]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[40]  Jon Røstum,et al.  Statistical analysis and definition of blockages-prediction formulae for the wastewater network of Oslo by evolutionary computing. , 2009, Water science and technology : a journal of the International Association on Water Pollution Research.

[41]  R Baur,et al.  Selective inspection planning with ageing forecast for sewer types. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[42]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[43]  Daniele B. Laucelli,et al.  Asset deterioration analysis using multi-utility data and multi-objective data mining , 2009 .

[44]  Richard N. Palmer,et al.  Prioritizing Sewer Line Inspection with an Expert System , 1999 .

[45]  Neil S. Grigg,et al.  Failure Assessment Modeling to Prioritize Water Pipe Renewal: Two Case Studies , 2009 .

[46]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[47]  Richard Fenner,et al.  Case-based reasoning approach for managing sewerage assets , 2007 .

[48]  Huu Dung Tran,et al.  Investigation of deterioration models for stormwater pipe systems , 2007 .

[49]  Christian Borgelt,et al.  Introduction to Neural Networks , 2016 .

[50]  Ingo Kropp,et al.  STATISTICAL ANALYSIS OF INSPECTION DATA FOR THE ASSET MANAGEMENT OF SEWER NETWORKS , 2003 .

[51]  Richard Fenner,et al.  A decision support model for the rehabilitation of “non-critical” sewers , 1998 .

[52]  G. Kuczera,et al.  Markov Model for Storm Water Pipe Deterioration , 2002 .

[53]  D Jacobi,et al.  Sewer rehabilitation strategy in Berlin. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[54]  Santiago Maria Reyna Optimal planning of sewer systems rehabilitation , 1993 .

[55]  A. Vanrenterghem-Raven Risk Factors of Structural Degradation of an Urban Water Distribution System , 2007 .

[56]  Helena Alegre Is strategic asset management applicable to small and medium utilities? , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.

[57]  Guru Kulandaivel,et al.  Pipeline Condition Prediction Using Neural Network Models , 2005 .

[58]  Seth D. Guikema,et al.  Statistical models for the analysis of water distribution system pipe break data , 2009, Reliab. Eng. Syst. Saf..

[59]  Y. Le Gat,et al.  Modelling the deterioration process of drainage pipelines , 2008 .

[60]  Paul Davis,et al.  Application of probabilistic neural networks in modelling structural deterioration of stormwater pipes , 2006 .