An informative subset-based estimator for censored quantile regression

Quantile regression in the presence of fixed censoring has been studied extensively in the literature. However, existing methods either suffer from computational instability or require complex procedures involving trimming and smoothing, which complicates the asymptotic theory of the resulting estimators. In this paper, we propose a simple estimator that is obtained by applying standard quantile regression to observations in an informative subset. The proposed method is computationally convenient and conceptually transparent. We demonstrate that the proposed estimator achieves the same asymptotical efficiency as the Powell’s estimator, as long as the conditional censoring probability can be estimated consistently at a nonparametric rate and the estimated function satisfies some smoothness conditions. A simulation study suggests that the proposed estimator has stable and competitive performance relative to more elaborate competitors.

[1]  Han Hong,et al.  Three-Step Censored Quantile Regression and Extramarital Affairs , 2002 .

[2]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[3]  Q. Shao,et al.  A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs , 1996 .

[4]  N. Altman An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .

[5]  Peter Winker,et al.  Improving the computation of censored quantile regressions , 2007, Comput. Stat. Data Anal..

[6]  H. Dette,et al.  Nonparametric quantile regression for twice censored data , 2010, 1007.3376.

[7]  R. Koenker Quantile Regression: Name Index , 2005 .

[8]  Bernd Fitzenberger,et al.  A Guide to Censored Quantile Regressions , 1997 .

[9]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[10]  Achim Zeileis,et al.  Econometrics in R: Past, Present, and Future , 2008 .

[11]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[12]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[13]  James L. Powell,et al.  Two-step estimation of semiparametric censored regression models , 2001 .

[14]  Jing Wang,et al.  Distribution function estimation by constrained polynomial spline regression , 2010 .

[15]  Lingzhi Zhou,et al.  A simple censored median regression estimator , 2006 .

[16]  Moshe Buchinsky CHANGES IN THE U.S. WAGE STRUCTURE 1963-1987: APPLICATION OF QUANTILE REGRESSION , 1994 .

[17]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[18]  J. Powell,et al.  Censored regression quantiles , 1986 .

[19]  R. Koenker Censored Quantile Regression Redux , 2008 .

[20]  Jinyong Hahn,et al.  An Alternative Estimator for the Censored Quantile Regression Model , 1998 .

[21]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[22]  M. Wand Local Regression and Likelihood , 2001 .

[23]  R. Koenker,et al.  An interior point algorithm for nonlinear quantile regression , 1996 .

[24]  Lan Wang,et al.  Locally Weighted Censored Quantile Regression , 2009 .

[25]  Bernd Fitzenberger,et al.  Computational aspects of censored quantile regression , 1997 .

[26]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .