Interface between topological and superconducting qubits.

We propose and analyze an interface between a topological qubit and a superconducting flux qubit. In our scheme, the interaction between Majorana fermions in a topological insulator is coherently controlled by a superconducting phase that depends on the quantum state of the flux qubit. A controlled-phase gate, achieved by pulsing this interaction on and off, can transfer quantum information between the topological qubit and the superconducting qubit.

[1]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[2]  W. Marsden I and J , 2012 .

[3]  P. Zoller,et al.  Anyonic interferometry and protected memories in atomic spin lattices , 2007, 0711.1365.

[4]  Parsa Bonderson,et al.  Topological quantum buses: coherent quantum information transfer between topological and conventional qubits. , 2011, Physical review letters.

[5]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[6]  D. DiVincenzo,et al.  Dephasing of a superconducting qubit induced by photon noise. , 2005, Physical review letters.

[7]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[8]  C. W. J. Beenakker,et al.  Anyonic interferometry without anyons: how a flux qubit can read out a topological qubit , 2010, 1005.3423.

[9]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[10]  H. Alloul Introduction to Superconductivity , 2011 .

[11]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[12]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[13]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[14]  S. Sarma,et al.  Proximity effect at the superconductor–topological insulator interface , 2010, 1002.0842.

[15]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[16]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[17]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[18]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[19]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[20]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[21]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[22]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[23]  S. Das Sarma,et al.  Universal quantum computation in a semiconductor quantum wire network , 2010, 1007.4204.

[24]  J I Cirac,et al.  Creation, manipulation, and detection of Abelian and non-Abelian anyons in optical lattices. , 2008, Physical review letters.

[25]  J. E. Mooij,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[26]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.