7 Tesla 22‐channel wrap‐around coil array for cervical spinal cord and brainstem imaging

Increased signal‐to‐noise ratio and blood oxygenation level‐dependent sensitivity at 7 Tesla (T) have the potential to enable high‐resolution imaging of the human cervical spinal cord and brainstem. We propose a new two‐panel radiofrequency coil design for these regions to fully exploit the advantages of ultra‐high field.

[1]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[2]  Patrick W Stroman,et al.  Applying functional MRI to the spinal cord and brainstem. , 2010, Magnetic resonance imaging.

[3]  Vasily L Yarnykh,et al.  Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field , 2007, Magnetic resonance in medicine.

[4]  Julien Cohen-Adad,et al.  The current state-of-the-art of spinal cord imaging: Methods , 2014, NeuroImage.

[5]  J. Helpern,et al.  High‐resolution human cervical spinal cord imaging at 7 T , 2012, NMR in biomedicine.

[6]  S. Kollias,et al.  Duvernoy's Atlas of the Human Brain Stem and Cerebellum , 2009 .

[7]  A. Webb,et al.  A radiofrequency coil configuration for imaging the human vertebral column at 7 T. , 2011, Journal of magnetic resonance.

[8]  Tobias Kober,et al.  Dielectric pads and low‐ B1+ adiabatic pulses: Complementary techniques to optimize structural T1w whole‐brain MP2RAGE scans at 7 tesla , 2014, Journal of magnetic resonance imaging : JMRI.

[9]  Paul A Bottomley,et al.  Noise figure limits for circular loop MR coils , 2009, Magnetic resonance in medicine.

[10]  Emanuele Schiavi,et al.  SAR reduction in 7T C‐spine imaging using a “dark modes” transmit array strategy , 2014, Magnetic resonance in medicine.

[11]  G. Metzger,et al.  Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements , 2008, Magnetic resonance in medicine.

[12]  Peter Kellman,et al.  Image reconstruction in SNR units: A general method for SNR measurement † , 2005, Magnetic resonance in medicine.

[13]  S M Wright,et al.  Design of Matching Networks for Low Noise Preamplifiers , 1995, Magnetic resonance in medicine.

[14]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[15]  Susumu Mori,et al.  Diffusion Tensor Magnetic Resonance Imaging of Wallerian Degeneration in Rat Spinal Cord after Dorsal Root Axotomy , 2009, The Journal of Neuroscience.

[16]  Irene Tracey,et al.  Assessment of physiological noise modelling methods for functional imaging of the spinal cord , 2012, NeuroImage.

[17]  Olivia K. Faull,et al.  Physiological Noise in Brainstem fMRI , 2013, Front. Hum. Neurosci..

[18]  D. Sodickson,et al.  Optimizing 7 T Spine Array Design through Offsetting of Transmit and Receive Elements and Quadrature Excitation , 2009 .

[19]  J. Polimeni,et al.  96‐Channel receive‐only head coil for 3 Tesla: Design optimization and evaluation , 2009, Magnetic resonance in medicine.

[20]  Robert Turner,et al.  High-Resolution MR Imaging of the Human Brainstem In vivo at 7 Tesla , 2013, Front. Hum. Neurosci..

[21]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[22]  Hellmut Merkle,et al.  A 7T spine array based on electric dipole transmitters , 2015, Magnetic resonance in medicine.

[23]  Joong Hee Kim,et al.  Noninvasive detection of brainstem and spinal cord axonal degeneration in an amyotrophic lateral sclerosis mouse model , 2011, NMR in biomedicine.

[24]  T. Jaermann,et al.  A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord. , 2006, AJNR. American journal of neuroradiology.

[25]  Julien Cohen-Adad,et al.  Nineteen‐channel receive array and four‐channel transmit array coil for cervical spinal cord imaging at 7T , 2014, Magnetic resonance in medicine.

[26]  K. Uğurbil,et al.  Ultrahigh field magnetic resonance imaging and spectroscopy. , 2003, Magnetic resonance imaging.

[27]  Daniel K Sodickson,et al.  Design and Application of Combined 8-Channel Transmit and 10-Channel Receive Arrays and Radiofrequency Shimming for 7-T Shoulder Magnetic Resonance Imaging , 2014, Investigative radiology.

[28]  Gregory J. Metzger,et al.  A 16‐channel combined loop‐dipole transceiver array for 7 Tesla body MRI , 2017, Magnetic resonance in medicine.

[29]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[30]  R. E. Schmidt,et al.  Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury , 2007, Magnetic resonance in medicine.

[31]  P. W. Stroman,et al.  The current state-of-the-art of spinal cord imaging: Applications , 2014, NeuroImage.

[32]  Junqian Xu,et al.  Spinal cord tract diffusion tensor imaging reveals disability substrate in demyelinating disease , 2013, Neurology.

[33]  Christian Büchel,et al.  Spinal Cord–Midbrain Functional Connectivity Is Related to Perceived Pain Intensity: A Combined Spino-Cortical fMRI Study , 2015, The Journal of Neuroscience.

[34]  Abraham Z. Snyder,et al.  Improved in vivo diffusion tensor imaging of human cervical spinal cord , 2013, NeuroImage.