Enhancing the spatiotemporal features of polar mesosphere summer echoes using coherent MIMO and radar imaging at MAARSY

Abstract. Polar mesospheric summer echoes (PMSEs) are very strong radar echoes caused by the presence of ice particles, turbulence, and free electrons in the mesosphere over polar regions. For more than three decades, PMSEs have been used as natural tracers of the complicated atmospheric dynamics of this region. Neutral winds and turbulence parameters have been obtained assuming PMSE horizontal homogeneity on scales of tens of kilometers. Recent radar imaging studies have shown that PMSEs are not homogeneous on these scales and instead they are composed of kilometer-scale structures. In this paper, we present a technique that allows PMSE observations with unprecedented angular resolution (∼0.6∘). The technique combines the concept of coherent MIMO (Multiple Input Multiple Output) and two high-resolution imaging techniques, i.e., Capon and maximum entropy (MaxEnt). The resulting resolution is evaluated by imaging specular meteor echoes. The gain in angular resolution compared to previous approaches using SIMO (Single Input Multiple Output) and Capon is at least a factor of 2; i.e., at 85 km, we obtain a horizontal resolution of ∼900 m. The advantage of the new technique is evaluated with two events of 3-D PMSE structures showing: (1) horizontal wavelengths of 8–10 km and periods of 4–7 min, drifting with the background wind, and (2) horizontal wavelengths of 12–16 km and periods of 15–20 min, not drifting with the background wind. Besides the advantages of the implemented technique, we discuss its current challenges, like the use of reduced power aperture and processing time, as well as the future opportunities for improving the understanding of the complex small-scale atmospheric dynamics behind PMSEs.

[1]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[2]  W. Ecklund,et al.  Long‐term observations of the Arctic mesosphere with the MST radar at Poker Flat, Alaska , 1981 .

[3]  A. C. Riddle,et al.  Monthly mean values of the mesospheric wind field over Poker Flat Alaska , 1984 .

[4]  J. Röttger,et al.  First observations of summer polar mesospheric backscatter with a 224 MHz radar , 1988 .

[5]  M. Kelley,et al.  Large‐ and small‐scale organization of electrons in the high‐latitude mesosphere: Implications of the STATE data , 1988 .

[6]  P. Czechowsky,et al.  VHF radar measurements of the aspect sensitivity of the summer polar mesopause echoes over Andenes (69°N,16°E), Norway , 1988 .

[7]  S. A. Smith,et al.  Studies of Velocity Fluctuations in the Lower Atmosphere Using the MU Radar. Part II: Momentum Fluxes and Energy Densities , 1990 .

[8]  D. Fritts,et al.  Multiple-frequency studies of the high-latitude summer mesosphere : implications for scattering processes , 1990 .

[9]  E. Kudeki,et al.  Radar interferometric imaging of field‐aligned plasma irregularities in the equatorial electrojet , 1991 .

[10]  D. Zrnic,et al.  Weather Signal Processing , 1993 .

[11]  D. Fritts,et al.  High-resolution measurements of vertical velocity with the European incoherent scatter VHF radar: 1. Motion field characteristics and measurement biases , 1995 .

[12]  L. I. Næsheim,et al.  First detection of charged dust particles in the Earth's mesosphere , 1996 .

[13]  D. Hysell Radar imaging of equatorial F region irregularities with maximum entropy interferometry , 1996 .

[14]  R. Woodman Coherent radar imaging: Signal processing and statistical properties , 1997 .

[15]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[16]  S. Fukao,et al.  Coherent radar imaging using Capon's method , 1998 .

[17]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[18]  R. Palmer,et al.  A simulation study of coherent radar imaging , 2000 .

[19]  K. Stebel,et al.  Polar mesosphere summer echoes and noctilucent clouds: Simultaneous and common‐volume observations by radar, lidar and CCD camera , 2000 .

[20]  R. Walterscheid,et al.  Observations of the breakdown of an atmospheric gravity wave near the cold summer mesopause at 54N , 2000 .

[21]  W. Singer,et al.  Scattering properties of PMSE irregularities and refinement of velocity estimates , 2001 .

[22]  R. Palmer,et al.  Atmospheric radar imaging using multiple‐receiver and multiple‐frequency techniques , 2001 .

[23]  J. Chau,et al.  Antenna compression using binary phase coding , 2001 .

[24]  J. Chau,et al.  Three-dimensional coherent radar imaging at Jicamarca: comparison of different inversion techniques , 2001 .

[25]  P. Chilson,et al.  An investigation of scattering mechanisms and dynamics in PMSE using coherent radar imaging , 2001 .

[26]  M. Rapp,et al.  D region electron number density limits for the existence of polar mesosphere summer echoes , 2002 .

[27]  J. Hecht Instability layers and airglow imaging , 2004 .

[28]  M. Rapp,et al.  Polar mesosphere summer echoes (PMSE): Review of observations and current understanding , 2004 .

[29]  David L. Hysell,et al.  Optimal aperture synthesis radar imaging , 2006 .

[30]  S. Franke,et al.  Characteristics of short‐period wavelike features near 87 km altitude from airglow and lidar observations over Maui , 2007 .

[31]  H. Takahashi,et al.  Recent Progress in Mesospheric Gravity Wave studies UsingNightglow Imaging Systems , 2005 .

[32]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[33]  M. Rapp,et al.  Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999–2008 , 2010 .

[34]  Paul V. Brennan,et al.  FMCW Based MIMO Imaging Radar for Maritime Navigation , 2011 .

[35]  M. Nicolls,et al.  The electron density dependence of polar mesospheric summer echoes , 2011 .

[36]  M. Rapp,et al.  Horizontally resolved structures of radar backscatter from polar mesospheric layers , 2012 .

[37]  M. Rapp,et al.  MAARSY: The new MST radar on Andøya—System description and first results , 2012 .

[38]  Marco Milla,et al.  Radar imaging with compressed sensing , 2013 .

[39]  M. Rapp,et al.  Investigation of gravity waves using horizontally resolved radial velocity measurements , 2013 .

[40]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[41]  Steven M. Smith,et al.  The identification of mesospheric frontal gravity-wave events at a mid-latitude site , 2014 .

[42]  J. Chau,et al.  MAARSY multiple receiver phase calibration using radio sources , 2014 .

[43]  G. Baumgarten,et al.  Quantifying Kelvin‐Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations , 2014 .

[44]  Toru Sato,et al.  Meteor Trail Echo Rejection in Atmospheric Phased Array Radars Using Adaptive Sidelobe Cancellation , 2014 .

[45]  R. Latteck,et al.  Extended observations of polar mesosphere winter echoes over Andøya (69°N) using MAARSY , 2015 .

[46]  Namrata Vaswani,et al.  Recursive Recovery of Sparse Signal Sequences From Compressive Measurements: A Review , 2016, IEEE Transactions on Signal Processing.

[47]  J. Chau,et al.  Patches of polar mesospheric summer echoes characterized from radar imaging observations with MAARSY , 2016 .

[48]  P. Hoffmann,et al.  Polar mesospheric horizontal divergence and relative vorticity measurements using multiple specular meteor radars , 2017 .

[49]  Tobias Weber,et al.  Coherent MIMO to Improve Aperture Synthesis Radar Imaging of Field-Aligned Irregularities: First Results at Jicamarca , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[50]  J. Chau,et al.  Observation of Kelvin–Helmholtz instabilities and gravity waves in the summer mesopause above Andenes in Northern Norway , 2018 .

[51]  M. Lehtinen,et al.  Multi-static spatial and angular studies of polar mesospheric summer echoes combining MAARSY and KAIRA , 2018, Atmospheric Chemistry and Physics.