Domain wall and interphase boundary motion in a two-phase morphotropic phase boundary ferroelectric: Frequency dispersion and contribution to piezoelectric and dielectric properties

[1]  C. Randall,et al.  Phase Diagram of the Perovskite System (1−x)BiScO3-xPbTiO3 , 2004 .

[2]  M. Itoh,et al.  Lattice distortion under an electric field in BaTiO3 piezoelectric single crystal , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Dragan Damjanovic,et al.  Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals , 2006 .

[4]  R. Harrison,et al.  Dynamical excitation and anelastic relaxation of ferroelastic domain walls in LaAlO 3 , 2004 .

[5]  D. Viehland,et al.  In‐situ X‐ray diffraction study of an electric field induced phase transition and giant strain in Na0.5Bi0.5TiO3–x %BaTiO3 lead‐free single crystals , 2011 .

[6]  A. Steuwer,et al.  Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics , 2006 .

[7]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[8]  C. Randall,et al.  Preparation and Characterization of High Temperature Perovskite Ferroelectrics in the Solid-Solution (1-x)BiScO3–xPbTiO3 , 2002 .

[9]  C. Randall,et al.  Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics , 2006 .

[10]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[11]  Dragan Damjanovic,et al.  Domain wall pinning contribution to the nonlinear dielectric permittivity in Pb(Zr, Ti)O3 thin films , 1998 .

[12]  J. Rouquette,et al.  Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate. , 2011, Physical review letters.

[13]  G. Rossetti,et al.  Phase coexistence near the morphotropic phase boundary in lead zirconate titanate (PbZrO3-PbTiO3) solid solutions , 2006 .

[14]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[15]  Dragan Damjanovic Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics , 2005 .

[16]  Bog-Gi Kim,et al.  Temperature-dependent neutron diffraction study of phase separation at morphotropic phase boundary in (1−x)BiScO3–xPbTiO3 , 2009 .

[17]  M. Hagen,et al.  WOMBAT: The High Intensity Powder Diffractometer at the OPAL Reactor , 2006 .

[18]  V. Radeka,et al.  A large, high performance, curved 2D position-sensitive neutron detector ☆ , 2002 .

[19]  Dragan Damjanovic Comments on Origins of Enhanced Piezoelectric Properties in Ferroelectrics , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  C. Randall,et al.  Crystal growth and characterization of new high Curie temperature (1−x)BiScO3–xPbTiO3 single crystals , 2002 .

[21]  T. Finlayson,et al.  Characterization of domain structures from diffraction profiles in tetragonal ferroelastic ceramics , 2006 .

[22]  Dragan Damjanovic,et al.  Nanodomains in Fe+3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties , 2009 .

[23]  D. Pandey,et al.  Stability of the various crystallographic phases of the multiferroic (1−x)BiFeO3–xPbTiO3 system as a function of composition and temperature , 2010 .

[24]  K. Uchino,et al.  Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary , 1998 .

[25]  B. Peng,et al.  Evaluation of domain wall motion during polymorphic phase transition in (K, Na)NbO3-based piezoelectric ceramics by nonlinear response measurements , 2011 .

[26]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[27]  Jacob L. Jones,et al.  Origins of Electro‐Mechanical Coupling in Polycrystalline Ferroelectrics During Subcoercive Electrical Loading , 2011 .

[28]  K. Bhattacharya,et al.  Domain switching in polycrystalline ferroelectric ceramics , 2005, Nature materials.

[29]  Thomas R. Shrout,et al.  High Curie temperature piezocrystals in the BiScO3-PbTiO3 perovskite system , 2003 .

[30]  Russell J. Hemley,et al.  Origin of morphotropic phase boundaries in ferroelectrics , 2008, Nature.

[31]  L. Martin,et al.  Nanoscale Structure and Mechanism for Enhanced Electromechanical Response of Highly Strained BiFeO3 Thin Films , 2011, Advanced materials.

[32]  Dhananjai Pandey,et al.  Origin of high piezoelectric response of Pb(ZrxTi1-x)O3 at the morphotropic phase boundary : Role of elastic instability , 2008 .

[33]  Mark Hoffman,et al.  Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics , 2006 .

[34]  Jacob L. Jones,et al.  Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3 , 2011 .

[35]  Matthew J. Davis,et al.  Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics , 2007, cond-mat/0703121.

[36]  R. Theissmann,et al.  Nanodomains in morphotropic lead zirconate titanate ceramics : on the origin of the strong piezoelectric effect , 2007 .

[37]  Zhengkui Xu,et al.  High piezoelectric activity in (Na,K)NbO3 based lead-free piezoelectric ceramics: Contribution of nanodomains , 2011 .

[38]  D. Viehland,et al.  Electric field dependent phase stability and structurally bridging orthorhombic phase in Na0.5Bi0.5TiO3-x%BaTiO3 crystals near the MPB , 2011 .

[39]  Dragan Damjanovic,et al.  STRESS AND FREQUENCY DEPENDENCE OF THE DIRECT PIEZOELECTRIC EFFECT IN FERROELECTRIC CERAMICS , 1997 .

[40]  D. Hall Review Nonlinearity in piezoelectric ceramics , 2001 .

[41]  H. Kungl,et al.  Nanodomain structure of Pb[Zr 1-x Ti x ]O 3 at its morphotropic phase boundary: Investigations from local to average structure , 2007 .

[42]  Jacob L. Jones,et al.  Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7% BaTiO3 piezoelectric ceramic , 2009 .

[43]  Logarithmic Domain-Wall Dispersion , 2002 .

[44]  A. Bell,et al.  Observation of a time-dependent structural phase transition in potassium sodium bismuth titanate , 2011 .

[45]  N. Setter,et al.  Piezoelectric anisotropy: Enhanced piezoelectric response along nonpolar directions in perovskite crystals , 2006 .

[46]  Dragan Damjanovic LOGARITHMIC FREQUENCY DEPENDENCE OF THE PIEZOELECTRIC EFFECT DUE TO PINNING OF FERROELECTRIC-FERROELASTIC DOMAIN WALLS , 1997 .

[47]  Jacob L. Jones,et al.  Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction , 2005 .

[48]  X. L. Zhang,et al.  Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K , 1983 .

[49]  Qiming Zhang,et al.  NONLINEARITY AND SCALING BEHAVIOR IN DONOR-DOPED LEAD ZIRCONATE TITANATE PIEZOCERAMIC , 1998 .

[50]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[51]  Jacob L. Jones,et al.  Deaging and asymmetric energy landscapes in electrically biased ferroelectrics. , 2012, Physical review letters.

[52]  Y. Noguchi,et al.  Synchrotron Radiation Study on Time-Resolved Tetragonal Lattice Strain of BaTiO3 under Electric Field , 2011 .

[53]  R. Ramesh,et al.  A Strain-Driven Morphotropic Phase Boundary in BiFeO3 , 2009, Science.

[54]  G. Fantozzi,et al.  Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics , 2002 .

[55]  Dielectric response due to stochastic motion of pinned domain walls , 2004, cond-mat/0406401.

[56]  Leslie E. Cross,et al.  THE EXTRINSIC NATURE OF NONLINEAR BEHAVIOR OBSERVED IN LEAD ZIRCONATE TITANATE FERROELECTRIC CERAMIC , 1991 .