Mutually orthogonal latin squares based on cellular automata
暂无分享,去创建一个
Maximilien Gadouleau | Enrico Formenti | Luca Mariot | Alberto Leporati | A. Leporati | M. Gadouleau | L. Mariot | E. Formenti
[1] Solomon W. Golomb,et al. Rook domains, Latin squares, affine planes, and error-distributing codes , 1964, IEEE Trans. Inf. Theory.
[2] John Pedersent. Cellular Automata as Algebraic Systems , 1992 .
[3] John Pedersen,et al. Cellular Automata as Algebraic Systems , 1992, Complex Syst..
[4] Ziba Eslami,et al. A verifiable multi-secret sharing scheme based on cellular automata , 2010, Inf. Sci..
[5] Harald Niederreiter,et al. Introduction to finite fields and their applications: Preface , 1994 .
[6] Luca Mariot,et al. Sharing Secrets by Computing Preimages of Bipermutive Cellular Automata , 2014, ACRI.
[7] Domagoj Jakobovic,et al. Cellular automata based S-boxes , 2018, Cryptography and Communications.
[8] K. Eloranta,et al. Partially permutive cellular automata , 1993 .
[9] H. F. Macneish,et al. Euler Squares , 2010 .
[10] Astrid Reifegerste. On an Involution Concerning Pairs of Polynomials over F2 , 2000, J. Comb. Theory, Ser. A.
[11] Luca Mariot,et al. A cryptographic and coding-theoretic perspective on the global rules of cellular automata , 2017, Natural Computing.
[12] Margaret J. Robertson,et al. Design and Analysis of Experiments , 2006, Handbook of statistics.
[13] Cristopher Moore,et al. Predicting nonlinear cellular automata quickly by decomposing them into linear ones , 1997, patt-sol/9701008.
[14] Igor E. Shparlinski,et al. Complexity of some arithmetic problems for binary polynomials , 2003, computational complexity.
[15] Charles J. Colbourn,et al. Construction Techniques for Mutually Orthogonal Latin Squares , 1995 .
[16] Serge Vaudenay,et al. On the Need for Multipermutations: Cryptanalysis of MD4 and SAFER , 1994, FSE.
[17] J. Deissler. Ja n 20 13 A resultant formula for Hensel ’ s Lemma , 2013 .
[18] Enrico Formenti,et al. Constructing Orthogonal Latin Squares from Linear Cellular Automata , 2016, ArXiv.
[19] Claude Carlet,et al. The Fifth International Students’ Olympiad in cryptography—NSUCRYPTO: Problems and their solutions , 2020, Cryptologia.
[20] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[21] Xiang-dong Hou,et al. Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields , 2008, Finite Fields Their Appl..
[22] Douglas R. Stinson,et al. Combinatorial Characterizations of Authentication Codes II , 1992, Des. Codes Cryptogr..
[23] J. Dénes,et al. Latin squares and their applications , 1974 .
[24] Arthur T. Benjamin,et al. The Probability of Relatively Prime Polynomials , 2007 .
[25] Enrico Formenti,et al. Enumerating Orthogonal Latin Squares Generated by Bipermutive Cellular Automata , 2017, AUTOMATA.
[26] Cristopher Moore,et al. Algebraic Properties of the Block Transformation on Cellular Automata , 1996, Complex Syst..
[27] Richard M. Wilson,et al. Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..
[28] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[29] Enrico Formenti,et al. Computing the periods of preimages in surjective cellular automata , 2016, Natural Computing.
[30] Ángel Martín del Rey,et al. A secret sharing scheme based on cellular automata , 2005, Appl. Math. Comput..
[31] Douglas R. Stinson,et al. Combinatorial characterizations of authentication codes , 1991, Des. Codes Cryptogr..
[32] Jarkko Kari,et al. Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..