Mutually orthogonal latin squares based on cellular automata

We investigate sets of mutually orthogonal latin squares (MOLS) generated by cellular automata (CA) over finite fields. After introducing how a CA defined by a bipermutive local rule of diameter d over an alphabet of q elements generates a Latin square of order $$q^{d-1}$$ q d - 1 , we study the conditions under which two CA generate a pair of orthogonal Latin squares. In particular, we prove that the Latin squares induced by two Linear Bipermutive CA (LBCA) over the finite field $$\mathbb {F}_q$$ F q are orthogonal if and only if the polynomials associated to their local rules are relatively prime. Next, we enumerate all such pairs of orthogonal Latin squares by counting the pairs of coprime monic polynomials with nonzero constant term and degree n over $$\mathbb {F}_q$$ F q . Finally, we present a construction for families of MOLS based on LBCA, and prove that their cardinality corresponds to the maximum number of pairwise coprime polynomials with nonzero constant term. Although our construction does not yield all such families of MOLS, we show that the resulting lower bound is asymptotically close to their actual number.

[1]  Solomon W. Golomb,et al.  Rook domains, Latin squares, affine planes, and error-distributing codes , 1964, IEEE Trans. Inf. Theory.

[2]  John Pedersent Cellular Automata as Algebraic Systems , 1992 .

[3]  John Pedersen,et al.  Cellular Automata as Algebraic Systems , 1992, Complex Syst..

[4]  Ziba Eslami,et al.  A verifiable multi-secret sharing scheme based on cellular automata , 2010, Inf. Sci..

[5]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: Preface , 1994 .

[6]  Luca Mariot,et al.  Sharing Secrets by Computing Preimages of Bipermutive Cellular Automata , 2014, ACRI.

[7]  Domagoj Jakobovic,et al.  Cellular automata based S-boxes , 2018, Cryptography and Communications.

[8]  K. Eloranta,et al.  Partially permutive cellular automata , 1993 .

[9]  H. F. Macneish,et al.  Euler Squares , 2010 .

[10]  Astrid Reifegerste On an Involution Concerning Pairs of Polynomials over F2 , 2000, J. Comb. Theory, Ser. A.

[11]  Luca Mariot,et al.  A cryptographic and coding-theoretic perspective on the global rules of cellular automata , 2017, Natural Computing.

[12]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[13]  Cristopher Moore,et al.  Predicting nonlinear cellular automata quickly by decomposing them into linear ones , 1997, patt-sol/9701008.

[14]  Igor E. Shparlinski,et al.  Complexity of some arithmetic problems for binary polynomials , 2003, computational complexity.

[15]  Charles J. Colbourn,et al.  Construction Techniques for Mutually Orthogonal Latin Squares , 1995 .

[16]  Serge Vaudenay,et al.  On the Need for Multipermutations: Cryptanalysis of MD4 and SAFER , 1994, FSE.

[17]  J. Deissler Ja n 20 13 A resultant formula for Hensel ’ s Lemma , 2013 .

[18]  Enrico Formenti,et al.  Constructing Orthogonal Latin Squares from Linear Cellular Automata , 2016, ArXiv.

[19]  Claude Carlet,et al.  The Fifth International Students’ Olympiad in cryptography—NSUCRYPTO: Problems and their solutions , 2020, Cryptologia.

[20]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[21]  Xiang-dong Hou,et al.  Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields , 2008, Finite Fields Their Appl..

[22]  Douglas R. Stinson,et al.  Combinatorial Characterizations of Authentication Codes II , 1992, Des. Codes Cryptogr..

[23]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[24]  Arthur T. Benjamin,et al.  The Probability of Relatively Prime Polynomials , 2007 .

[25]  Enrico Formenti,et al.  Enumerating Orthogonal Latin Squares Generated by Bipermutive Cellular Automata , 2017, AUTOMATA.

[26]  Cristopher Moore,et al.  Algebraic Properties of the Block Transformation on Cellular Automata , 1996, Complex Syst..

[27]  Richard M. Wilson,et al.  Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..

[28]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[29]  Enrico Formenti,et al.  Computing the periods of preimages in surjective cellular automata , 2016, Natural Computing.

[30]  Ángel Martín del Rey,et al.  A secret sharing scheme based on cellular automata , 2005, Appl. Math. Comput..

[31]  Douglas R. Stinson,et al.  Combinatorial characterizations of authentication codes , 1991, Des. Codes Cryptogr..

[32]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..