Exploiting arrays with multiple invariances using MUSIC and MODE

This paper describes several new techniques for direction of arrival (DOA) estimation using arrays composed of multiple translated and uncalibrated subarrays. The new algorithms can be thought of as generalizations of the MUSIC, Root-MUSIC, and MODE techniques originally developed for fully calibrated arrays. The advantage of these new approaches is that the DOAs can be estimated using either a simple one-dimensional (1-D) search or by rooting a polynomial, as opposed to the multidimensional search required by multiple invariance (MI)-ESPRIT. When it can be applied, the proposed MI-MODE algorithm shares the statistical optimality of MI-ESPRIT. While MI-MUSIC and Root-MI-MUSIC are only optimal for uncorrelated sources, they perform better than a single invariance implementation of ESPRIT and are thus better suited for finding the initial conditions required by the MI-ESPRIT search.

[1]  H. Kwakernaak,et al.  Recent progress in polynomial methods and Polynomial Toolbox for Matlab version 2.0 , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[2]  Michael D. Zoltowski,et al.  Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones , 1997 .

[3]  Petre Stoica,et al.  MUSIC, maximum likelihood and Cramer-Rao bound , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[4]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .

[5]  Thomas Kailath,et al.  Azimuth/elevation direction finding using regular array geometries , 1992 .

[6]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Bhaskar D. Rao,et al.  Performance analysis of Root-Music , 1989, IEEE Trans. Acoust. Speech Signal Process..

[8]  Björn E. Ottersten,et al.  Multiple invariance ESPRIT , 1992, IEEE Trans. Signal Process..

[9]  Michael D. Zoltowski,et al.  Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones , 1999, IEEE Trans. Signal Process..

[10]  Ed F. Deprettere,et al.  Multiresolution ESPRIT algorithm , 1999, IEEE Trans. Signal Process..

[11]  Bjorn Ottersten,et al.  Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing , 1993 .

[12]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons , 1990, IEEE Trans. Acoust. Speech Signal Process..

[13]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[14]  A.N. Lemma,et al.  On the multi-resolution ESPRIT algorithm , 1998, Ninth IEEE Signal Processing Workshop on Statistical Signal and Array Processing (Cat. No.98TH8381).

[15]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..

[16]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[17]  Bo Wahlberg,et al.  Analysis of state space system identification methods based on instrumental variables and subspace fitting , 1997, Autom..

[18]  Michael D. Zoltowski,et al.  Closed-form multi-dimensional multi-invariance ESPRIT , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[19]  Michael Sebek,et al.  Numerical and symbolic computation of polynomial matrix determinant , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[20]  Michael D. Zoltowski,et al.  Direction-finding with sparse rectangular dual-size spatial invariance array , 1998 .

[21]  Peter Strobach Bi-iteration multiple invariance subspace tracking and adaptive ESPRIT , 2000, IEEE Trans. Signal Process..

[22]  Michael D. Zoltowski,et al.  Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT , 1996, IEEE Trans. Signal Process..

[23]  R. Bro,et al.  Optimal joint azimuth-elevation and signal-array response estimation using parallel factor analysis , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[24]  Shiann-Jeng Yu,et al.  Efficient eigenspace-based array signal processing using multiple shift-invariant subarrays , 1999 .

[25]  Louis L. Scharf,et al.  Two-dimensional modal analysis based on maximum likelihood , 1994, IEEE Trans. Signal Process..

[26]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[27]  Ed F. Deprettere,et al.  Azimuth and elevation computation in high resolution DOA estimation , 1992, IEEE Trans. Signal Process..

[28]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[29]  Michael D. Zoltowski,et al.  Eigenstructure techniques for 2-D angle estimation with uniform circular arrays , 1994, IEEE Trans. Signal Process..

[30]  Petre Stoica,et al.  Generalized quadratic minimization and blind multichannel deconvolution , 2000, IEEE Trans. Signal Process..

[31]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[32]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[33]  P. Stoica,et al.  Maximum Likelhood Methods for Direction-of- Arrival Estimation , 1990 .