Variational inference with copula augmentation

We develop a general methodology for variational inference which preserves dependency among the latent variables. This is done by augmenting the families of distributions used in mean-field and structured approximation with copulas. Copulas allow one to separately model the dependency given a factorization of the variational distribution, and can guarantee us better approximations to the posterior as measured by KL divergence. We show that inference on the augmented distribution is highly scalable using stochastic optimization. Furthermore, the addition of a copula is generic and can be applied straightforwardly to any inference procedure using the original meanfield or structured approach. This reduces bias, sensitivity to local optima, sensitivity to hyperparameters, and significantly helps characterize and interpret the dependency among the latent variables.

[1]  Tamara Broderick,et al.  Covariance Matrices and Influence Scores for Mean Field Variational Bayes , 2015 .

[2]  Sean Gerrish,et al.  Black Box Variational Inference , 2013, AISTATS.

[3]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[4]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[5]  H. Gerber,et al.  Editorial to the special issue on modeling and measurement of multivariate risk in insurance and finance , 2009 .

[6]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[7]  Roger M. Cooke,et al.  Sampling algorithms for generating joint uniform distributions using the vine-copula method , 2007, Comput. Stat. Data Anal..

[8]  David M. Blei,et al.  Structured Stochastic Variational Inference , 2014, 1404.4114.

[9]  Lutz F. Gruber,et al.  Sequential Bayesian Model Selection of Regular Vine Copulas , 2015, 1512.00976.

[10]  Kjersti Aas Pair-copula constructions – even more flexible than copulas , 2013 .

[11]  H. Robbins A Stochastic Approximation Method , 1951 .

[12]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[13]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[14]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[15]  L. Hansen,et al.  Finite Sample Properties of Some Alternative Gmm Estimators , 2015 .

[16]  I JordanMichael,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008 .

[17]  R. Cooke,et al.  About the number of vines and regular vines on n nodes , 2010 .

[18]  Tim Salimans,et al.  Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression , 2012, ArXiv.

[19]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[20]  Michael I. Jordan,et al.  Exploiting Tractable Substructures in Intractable Networks , 1995, NIPS.

[21]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[22]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[23]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[24]  David M. Blei,et al.  Sparse stochastic inference for latent Dirichlet allocation , 2012, ICML.

[25]  Collin Carbno,et al.  Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.

[26]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[27]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .