Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions

<p style='text-indent:20px;'>In this paper, we consider the Cauchy problem of <inline-formula><tex-math id="M1">\begin{document}$ d $\end{document}</tex-math></inline-formula>-dimension Hartree type Dirac equation with nonlinearity <inline-formula><tex-math id="M2">\begin{document}$ c|x|^{-\gamma} * \langle \psi, \beta \psi\rangle $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ c\in \mathbb R\setminus\{0\} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ 0 < \gamma < d $\end{document}</tex-math></inline-formula>(<inline-formula><tex-math id="M5">\begin{document}$ d = 2,3 $\end{document}</tex-math></inline-formula>). Our aim is to show the local well-posedness in <inline-formula><tex-math id="M6">\begin{document}$ H^s $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M7">\begin{document}$ s > \frac{\gamma-1}2 $\end{document}</tex-math></inline-formula> with mass-supercritical cases(<inline-formula><tex-math id="M8">\begin{document}$ 1 < \gamma<d $\end{document}</tex-math></inline-formula>) and mass-critical case(<inline-formula><tex-math id="M9">\begin{document}$ {\gamma} = 1 $\end{document}</tex-math></inline-formula>) via bilinear estimates and angular decomposition for which we use the null structure of nonlinear term effectively. We also provide the flow of Dirac equations cannot be <inline-formula><tex-math id="M10">\begin{document}$ C^3 $\end{document}</tex-math></inline-formula> at the origin for <inline-formula><tex-math id="M11">\begin{document}$ H^s $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M12">\begin{document}$ s < \frac{\gamma-1}2 $\end{document}</tex-math></inline-formula>.</p>

[1]  Tohru Ozawa,et al.  Small data scattering of 2d Hartree type Dirac equations , 2021, 2107.13765.

[2]  Achenef Tesfahun Long-time Behavior of Solutions to Cubic Dirac Equation with Hartree Type Nonlinearity in ℝ1+2 , 2018, International Mathematics Research Notices.

[3]  Changhun Yang Scattering results for Dirac Hartree-type equations with small initial data , 2017, Communications on Pure & Applied Analysis.

[4]  S. Herr,et al.  Transference of Bilinear Restriction Estimates to Quadratic Variation Norms and the Dirac-Klein-Gordon System , 2016, 1605.04882.

[5]  Xuecheng Wang On Global Existence of 3D Charge Critical Dirac–Klein–Gordon System , 2013, 1311.6068.

[6]  S. Herr,et al.  The Cubic Dirac Equation: Small Initial Data in $${H^1(\mathbb{R}^3)}$$H1(R3) , 2013, 1310.5280.

[7]  N. Bournaveas,et al.  A note on the Chern-Simons-Dirac equations in the Coulomb Gauge , 2013, 1309.7277.

[8]  F. Pusateri Modified Scattering for the Boson Star Equation , 2013, 1308.6600.

[9]  S. Herr,et al.  The Boson star equation with initial data of low regularity , 2013, 1305.6392.

[10]  Hyungjin Huh,et al.  Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge , 2012, 1209.3841.

[11]  S. Selberg Bilinear Fourier restriction estimates related to the 2d wave equation , 2010, Advances in Differential Equations.

[12]  K. Tsutaya,et al.  Scattering theory for the Dirac equation with a non-local term , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  S. Selberg Anisotropic Bilinear L2 Estimates Related to the 3D Wave Equation , 2008, 0804.4302.

[14]  S. Selberg,et al.  NULL STRUCTURE AND ALMOST OPTIMAL LOCAL REGULARITY FOR THE DIRAC-KLEIN-GORDON SYSTEM , 2007 .

[15]  Tohru Ozawa,et al.  On radial solutions of semi-relativistic Hartree equations , 2007 .

[16]  Tohru Ozawa,et al.  On the Semirelativistic Hartree-Type Equation , 2006, SIAM J. Math. Anal..

[17]  R. Glassey,et al.  On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions , 1976 .

[18]  Jean-Claude Saut,et al.  Ill-Posedness Issues for the Benjamin-Ono and Related Equations , 2001, SIAM J. Math. Anal..