Unbiased Bayesian inference for population Markov jump processes via random truncations

We consider continuous time Markovian processes where populations of individual agents interact stochastically according to kinetic rules. Despite the increasing prominence of such models in fields ranging from biology to smart cities, Bayesian inference for such systems remains challenging, as these are continuous time, discrete state systems with potentially infinite state-space. Here we propose a novel efficient algorithm for joint state/parameter posterior sampling in population Markov Jump processes. We introduce a class of pseudo-marginal sampling algorithms based on a random truncation method which enables a principled treatment of infinite state spaces. Extensive evaluation on a number of benchmark models shows that this approach achieves considerable savings compared to state of the art methods, retaining accuracy and fast convergence. We also present results on a synthetic biology data set showing the potential for practical usefulness of our work.

[1]  Peter W. Glynn,et al.  A new approach to unbiased estimation for SDE's , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[2]  M. Peter,et al.  Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings , 2013, Nature Methods.

[3]  Andreas Ruttor,et al.  Efficient statistical inference for stochastic reaction processes. , 2009, Physical review letters.

[4]  Don McLeish,et al.  A general method for debiasing a Monte Carlo estimator , 2010, Monte Carlo Methods Appl..

[5]  J. Rosenthal,et al.  On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.

[6]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[7]  Bonnie Kirkpatrick,et al.  Efficient Continuous-Time Markov Chain Estimation , 2014, ICML.

[8]  A. Jensen,et al.  Markoff chains as an aid in the study of Markoff processes , 1953 .

[9]  Maurizio Filippone,et al.  Pseudo-Marginal Bayesian Inference for Gaussian Processes , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  David A. Rand,et al.  Bayesian inference of biochemical kinetic parameters using the linear noise approximation , 2009, BMC Bioinformatics.

[11]  D. Wilkinson,et al.  Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation , 2005, Biometrics.

[12]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[13]  Joaquin Quiñonero Candela,et al.  Counterfactual reasoning and learning systems: the example of computational advertising , 2013, J. Mach. Learn. Res..

[14]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[15]  Maurizio Filippone,et al.  Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE) , 2015, ICML.

[16]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[17]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[18]  Peter W. Glynn,et al.  Unbiased Estimation with Square Root Convergence for SDE Models , 2015, Oper. Res..

[19]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[20]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[21]  Nir Friedman,et al.  Mean Field Variational Approximation for Continuous-Time Bayesian Networks , 2009, J. Mach. Learn. Res..

[22]  S. Wittevrongel,et al.  Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.

[23]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[24]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[25]  G. Roberts,et al.  Unbiased Monte Carlo: Posterior estimation for intractable/infinite-dimensional models , 2014, Bernoulli.

[26]  Mark A. Girolami,et al.  Unbiased Bayes for Big Data: Paths of Partial Posteriors , 2015, ArXiv.

[27]  P. Jacob,et al.  On nonnegative unbiased estimators , 2013, 1309.6473.

[28]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[29]  K. Burrage,et al.  Stochastic models for regulatory networks of the genetic toggle switch. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[31]  Iain Murray,et al.  Pseudo-Marginal Slice Sampling , 2015, AISTATS.

[32]  Guido Sanguinetti,et al.  Variational inference for Markov jump processes , 2007, NIPS.

[33]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[34]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.

[35]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[36]  Leonard Kleinrock,et al.  Theory, Volume 1, Queueing Systems , 1975 .

[37]  Leonard Kleinrock,et al.  Queueing Systems - Vol. 1: Theory , 1975 .

[38]  Paul Fearnhead,et al.  Inference for reaction networks using the linear noise approximation , 2012, Biometrics.

[39]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .

[40]  Yves F. Atchad'e,et al.  On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods , 2013, 1306.4032.

[41]  Yee Whye Teh,et al.  Fast MCMC sampling for Markov jump processes and extensions , 2012, J. Mach. Learn. Res..