Unbiased Bayesian inference for population Markov jump processes via random truncations
暂无分享,去创建一个
Guido Sanguinetti | Jane Hillston | Anastasis Georgoulas | G. Sanguinetti | J. Hillston | Anastasis Georgoulas
[1] Peter W. Glynn,et al. A new approach to unbiased estimation for SDE's , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).
[2] M. Peter,et al. Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings , 2013, Nature Methods.
[3] Andreas Ruttor,et al. Efficient statistical inference for stochastic reaction processes. , 2009, Physical review letters.
[4] Don McLeish,et al. A general method for debiasing a Monte Carlo estimator , 2010, Monte Carlo Methods Appl..
[5] J. Rosenthal,et al. On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.
[6] J. Collins,et al. Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.
[7] Bonnie Kirkpatrick,et al. Efficient Continuous-Time Markov Chain Estimation , 2014, ICML.
[8] A. Jensen,et al. Markoff chains as an aid in the study of Markoff processes , 1953 .
[9] Maurizio Filippone,et al. Pseudo-Marginal Bayesian Inference for Gaussian Processes , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[10] David A. Rand,et al. Bayesian inference of biochemical kinetic parameters using the linear noise approximation , 2009, BMC Bioinformatics.
[11] D. Wilkinson,et al. Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation , 2005, Biometrics.
[12] M. Khammash,et al. The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.
[13] Joaquin Quiñonero Candela,et al. Counterfactual reasoning and learning systems: the example of computational advertising , 2013, J. Mach. Learn. Res..
[14] C. Gardiner. Handbook of Stochastic Methods , 1983 .
[15] Maurizio Filippone,et al. Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE) , 2015, ICML.
[16] D. Sherrington. Stochastic Processes in Physics and Chemistry , 1983 .
[17] A. J. Hall. Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .
[18] Peter W. Glynn,et al. Unbiased Estimation with Square Root Convergence for SDE Models , 2015, Oper. Res..
[19] S. Swain. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .
[20] Awad H. Al-Mohy,et al. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..
[21] Nir Friedman,et al. Mean Field Variational Approximation for Continuous-Time Bayesian Networks , 2009, J. Mach. Learn. Res..
[22] S. Wittevrongel,et al. Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.
[23] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[24] N. Kampen,et al. Stochastic processes in physics and chemistry , 1981 .
[25] G. Roberts,et al. Unbiased Monte Carlo: Posterior estimation for intractable/infinite-dimensional models , 2014, Bernoulli.
[26] Mark A. Girolami,et al. Unbiased Bayes for Big Data: Paths of Partial Posteriors , 2015, ArXiv.
[27] P. Jacob,et al. On nonnegative unbiased estimators , 2013, 1309.6473.
[28] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[29] K. Burrage,et al. Stochastic models for regulatory networks of the genetic toggle switch. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[30] C. W. Gardiner,et al. Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.
[31] Iain Murray,et al. Pseudo-Marginal Slice Sampling , 2015, AISTATS.
[32] Guido Sanguinetti,et al. Variational inference for Markov jump processes , 2007, NIPS.
[33] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[34] M. Beaumont. Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.
[35] Darren J. Wilkinson,et al. Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..
[36] Leonard Kleinrock,et al. Theory, Volume 1, Queueing Systems , 1975 .
[37] Leonard Kleinrock,et al. Queueing Systems - Vol. 1: Theory , 1975 .
[38] Paul Fearnhead,et al. Inference for reaction networks using the linear noise approximation , 2012, Biometrics.
[39] Leonard Kleinrock,et al. Queueing Systems: Volume I-Theory , 1975 .
[40] Yves F. Atchad'e,et al. On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods , 2013, 1306.4032.
[41] Yee Whye Teh,et al. Fast MCMC sampling for Markov jump processes and extensions , 2012, J. Mach. Learn. Res..