Revealing low-temperature atomic ordering in bulk Co-Pt with the high-throughput ab-initio method

The low-temperature phase diagram of bulk Co-Pt is studied with a high-throughput ab-initio method. Global, hcp-, and fcc-restricted convex hulls are constructed to evaluate stable and metastable phases. It is found that fcc-L10 is energetically degenerate with hcp-B19. Both structures are unstable with respect to phase decomposition into hcp-D019↔fcc-β2 at low temperature. Furthermore, L10 is an adaptive structure on the fcc-restricted convex hull which relates to the low energies of antiphase boundaries. Fcc-L12 is energetically degenerate with fcc-D023 for both Co3Pt and CoPt3. L12-Co3Pt and L10-CoPt belong to the fcc-restricted convex hull. They might stabilize above the Co hcp/fcc transition and remain kinetically frozen below. L12-CoPt3 is energetically well above the convex hull. Its experimental observation may result from yet unexplained finite-temperature effects.

[1]  V. Pierron-Bohnes,et al.  Comparative investigation of structural and transport properties of L10 NiPt and Copt phases; the role of magnetism , 1988 .

[2]  E. Beaurepaire,et al.  CoPt nanoparticles deposited by electron beam evaporation , 2005 .

[3]  Mark Asta,et al.  Equilibrium Monte Carlo simulations of A1-L10 ordering in FePt nanoparticles , 2005 .

[4]  T. Ohkubo,et al.  Size effect on the ordering of FePt granular films , 2003 .

[5]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[6]  2D arrays of CoPt nanocluster assemblies , 2005 .

[7]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[8]  Shuichi Iwata,et al.  The Pauling File, Binaries Edition , 2004 .

[9]  Annick Loiseau,et al.  Electron microscopy study of the coherent two-phase mixtures L10+ L12, in Co–Pt alloys , 1991 .

[10]  Stefano Curtarolo,et al.  Structure maps for hcp metals from first-principles calculations , 2010, 1002.2822.

[11]  J. Liu,et al.  Microstructures and magnetic alignment of L10 FePt nanoparticles , 2007 .

[12]  Stefano Curtarolo,et al.  Surface segregation in nanoparticles from first principles: The case of FePt , 2009, 0905.2917.

[13]  Helmut Dosch,et al.  Ordering and magnetism in Fe-Co: dense sequence of ground-state structures. , 2004, Physical review letters.

[14]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[15]  R. Chepulskii,et al.  First-principles study of magnetic properties of L 1 0 -ordered MnPt and FePt alloys , 2010 .

[16]  Alex Zunger,et al.  First-principles determination of low-temperature order and ground states of Fe-Ni, Fe-Pd, and Fe-Pt , 2009 .

[17]  D. Martin,et al.  A New Superlattice in Co‐Pt Alloys , 1952 .

[18]  G. Rossi,et al.  Structure and chemical ordering in CoPt nanoalloys. , 2008, Faraday discussions.

[19]  K. Albe,et al.  Lattice monte carlo simulations of FePt nanoparticles : Influence of size, composition, and surface segregation on order-disorder phenomena , 2005 .

[20]  Stefano Curtarolo,et al.  Uncovering compounds by synergy of cluster expansion and high-throughput methods. , 2010, Journal of the American Chemical Society.

[21]  C. Ricolleau,et al.  Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. , 2009, Nature materials.

[22]  Stefano Curtarolo,et al.  Theoretical study of metal borides stability , 2006 .

[23]  Nikolai A. Zarkevich,et al.  Low-energy antiphase boundaries, degenerate superstructures, and phase stability in frustrated fcc Ising model and Ag-Au alloys , 2008 .

[24]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[25]  W. H. Butler,et al.  Temperature and particle-size dependence of the equilibrium order parameter of FePt alloys , 2005, cond-mat/0504702.

[26]  Alex Zunger,et al.  Adaptive crystal structures: CuAu and NiPt. , 2003, Physical review letters.

[27]  J. Cohen,et al.  Long-range order and ordering kinetics in CoPt3 , 1972 .

[28]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[29]  T. Epicier,et al.  Evidence ofL10chemical order in CoPt nanoclusters: Direct observation and magnetic signature , 2008 .

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[32]  A. Alam,et al.  Structural, magnetic, and defect properties of Co-Pt-type magnetic-storage alloys: Density-functional theory study of thermal processing effects , 2010 .

[33]  B. Jeyadevan,et al.  Structural and magnetic properties of monolayer film of CoPt nanoparticles synthesized by polyol process , 2005 .

[34]  S. Curtarolo,et al.  Ab initio insights on the shapes of platinum nanocatalysts. , 2011, ACS nano.

[35]  K. Kurzydłowski Modelling of the microstructure and properties in the length scales varying from nano- to macroscopic , 2010 .

[36]  H. Yasuda,et al.  Phase diagrams in nanometer-sized alloy systems , 2002 .

[37]  A. Zunger,et al.  Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , 1997, cond-mat/9710225.

[38]  Hao Zeng,et al.  Exchange-coupled nanocomposite magnets by nanoparticle self-assembly , 2002, Nature.

[39]  Sungho Jin,et al.  Monolayer CoPt magnetic nanoparticle array using multiple thin film depositions , 2007 .

[40]  S. Curtarolo,et al.  Influence of Mo on the Fe:Mo:C nanocatalyst thermodynamics for single-walled carbon nanotube growth , 2008, 0803.3206.

[41]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[42]  H. Lee,et al.  Evolution of structure and magnetic properties of sputter-deposited CoPt thin films on MgO(111) substrates: Formation of the L11 phase , 2009 .

[43]  R. Smoluchowski,et al.  Phase Equilibria in an Ordering Alloy System , 1951 .