Solving state estimation in power systems by an interior point method

Abstract A linear programming formulation is employed to solve the static state estimation problem in power systems using the primal–dual predictor–corrector algorithm. This has been selected because it has emerged as an efficient algorithm that makes the direction search toward the optimal point easy. The technique was applied successfully into several power systems when simultaneous gross errors were considered. Results are presented showing that this algorithm exhibits a good performance under critical measurement errors.

[1]  A. Abur,et al.  A fast algorithm for the weighted least absolute value state estimation , 1991, IEEE Power Engineering Review.

[2]  Fernando L. Alvarado,et al.  Weighted Least Absolute Value state estimation using interior point methods , 1994 .

[3]  A. Abur,et al.  A fast algorithm for the weighted least absolute value state estimation (for power systems) , 1991 .

[4]  Ali Abur,et al.  Use of scaling in WLAV estimation of power system states , 1992 .

[5]  D. Falcão,et al.  Linear programming state estimation: error analysis and gross error identification , 1988 .

[6]  A. A. El-Keib,et al.  Fast linear programming state estimation using the dual formulation , 1992 .

[7]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[8]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[9]  M. Vidyasagar,et al.  Bad Data Rejection Properties of Weughted Least Absolute Value Techniques Applied to Static State Estimation , 1982, IEEE Transactions on Power Apparatus and Systems.

[10]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[11]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[12]  M. K. Celik,et al.  An incremental measurement placement algorithm for state estimation , 1995 .

[13]  Hua Wei,et al.  An interior point method for power system weighted nonlinear L/sub 1/ norm static state estimation , 1998 .

[14]  Joe H. Chow,et al.  Time-Scale Modeling of Dynamic Networks with Applications to Power Systems , 1983 .

[15]  George B. Dantzig,et al.  Reminiscences about the origins of linear programming , 1982, Oper. Res. Lett..

[16]  M. R. Irving,et al.  Power System State Estimation Using Linear Programming , 1978 .

[17]  Ali Abur,et al.  A bad data identification method for linear programming state estimation , 1990 .

[18]  Ali Abur,et al.  A robust WLAV state estimator using transformations , 1992 .

[19]  James A. Momoh,et al.  Optimal power flow : solution techniques, requirements, and challenges , 1996 .