Uniqueness Results for Second-Order Bellman--Isaacs Equations under Quadratic Growth Assumptions and Applications

In this paper, we prove a comparison result between semicontinuous viscosity sub- and supersolutions growing at most quadratically of second-order degenerate parabolic Hamilton--Jacobi--Bellman and Isaacs equations. As an application, we characterize the value function of a finite horizon stochastic control problem with unbounded controls as the unique viscosity solution of the corresponding dynamic programming equation.

[1]  P. L. Linos Optimal control of diffustion processes and hamilton-jacobi-bellman equations part I: the dynamic programming principle and application , 1983 .

[2]  William M. McEneaney,et al.  Uniqueness for Viscosity Solutions of Nonstationary Hamilton--Jacobi--Bellman Equations Under Some A Priori Conditions (with Applications) , 1995 .

[3]  G. Barles,et al.  Exit Time Problems in Optimal Control and Vanishing Viscosity Method , 1988 .

[4]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[5]  Olivier Ley,et al.  Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts , 2001, Advances in Differential Equations.

[6]  O. Alvarez,et al.  A quasilinear elliptic equation in ℝN , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  A. Bensoussan Stochastic control by functional analysis methods , 1982 .

[8]  H. Ishii Perron’s method for Hamilton-Jacobi equations , 1987 .

[9]  H. Ishii Comparison results for hamilton-jacobi equations without grwoth condition on solutions from above , 1997 .

[10]  V. Borkar Controlled diffusion processes , 2005, math/0511077.

[11]  Piermarco Cannarsa,et al.  Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations , 1989 .

[12]  H. Pham,et al.  Smooth Solutions to Optimal Investment Models with Stochastic Volatilities and Portfolio Constraints , 2002 .

[13]  P. Lions Optimal control of diffusion processes and hamilton–jacobi–bellman equations part 2 : viscosity solutions and uniqueness , 1983 .

[14]  Pierre-Louis Lions,et al.  Quadratic growth of solutions of fully nonlinear second order equations in $\mathbb{R}^n$ , 1990, Differential and Integral Equations.

[15]  Guy Barles,et al.  CRITICAL STOCK PRICE NEAR EXPIRATION , 1995 .

[16]  G. Barles,et al.  An approach of deterministic control problems with unbounded data , 1990 .

[17]  Martino Bardi,et al.  On the Bellman equation for some unbounded control problems , 1997 .

[18]  William M. McEneaney,et al.  Robust control and differential games on a finite time horizon , 1995, Math. Control. Signals Syst..

[19]  M. Kobylanski Backward stochastic differential equations and partial differential equations with quadratic growth , 2000 .

[20]  William M. McEneaney,et al.  Finite Time--Horizon Risk-Sensitive Control and the Robust Limit under a Quadratic Growth Assumption , 2001, SIAM J. Control. Optim..

[21]  H. Nagai Bellman equations of risk sensitive control , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[22]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[24]  N. V. Krylov Stochastic Linear Controlled Systems with Quadratic Cost Revisited , 2001 .

[25]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .

[26]  K. Ito,et al.  Existence of Solutions to the Hamilton–Jacobi–Bellman Equation under Quadratic Growth Conditions , 2001 .

[27]  Franco Rampazzo,et al.  Hamilton-Jacobi-Bellman equations with fast gradient-dependence , 2000 .

[28]  G. Barles,et al.  Uniqueness results for quasilinear parabolic equations through viscosity solutions' methods , 2003 .

[29]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[30]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[31]  Olivier Alvarez,et al.  Bounded-from-below viscosity solutions of Hamilton-Jacobi equations , 1997, Differential and Integral Equations.

[32]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[33]  D. Lamberton,et al.  Introduction au calcul stochastique appliqué à la finance , 1997 .

[34]  H. Ishii,et al.  Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains , 1991 .

[35]  P. Lions Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part I , 1983 .

[36]  William M. McEneaney A uniqueness result for the isaacs equation corresponding to nonlinear H∞ control , 1998, Math. Control. Signals Syst..

[37]  F. Benth,et al.  A PDE representation of the density of the minimal entropy martingale measure in stochastic volatility markets , 2005 .

[38]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .