A New Approach to the Upper Bound on the Average Distance from the Fermat-Weber Center of a Convex Body
暂无分享,去创建一个
[1] R. Osserman. The isoperimetric inequality , 1978 .
[2] Heinrich W. E. Jung. Über den kleinsten Kreis, der eine ebene Figur einschließt. , 1910 .
[3] Matthew J. Katz,et al. Improved bounds on the average distance to the Fermat-Weber center of a convex object , 2009, Inf. Process. Lett..
[4] George O. Wesolowsky,et al. THE WEBER PROBLEM: HISTORY AND PERSPECTIVES. , 1993 .
[5] Sándor P. Fekete,et al. Continuous Weber and k-Median Problems , 2000, SoCG 2000.
[6] János Pach,et al. Research problems in discrete geometry , 2005 .
[7] Boris Aronov,et al. Minimum-Cost Load-Balancing Partitions , 2007, Algorithmica.
[8] Joseph S. B. Mitchell,et al. On the continuous Weber and k-median problems (extended abstract) , 2000, SCG '00.
[9] Csaba D. Tóth,et al. New bounds on the average distance from the Fermat-Weber center of a planar convex body , 2009, Discret. Optim..
[10] Matthew J. Katz,et al. On the Fermat-Weber center of a convex object , 2005, Comput. Geom..