Constructions of QC LDPC codes based on integer sequences

Based on difference sequence and Hoey sequence, three types of (2, F) and (3, F) quasi cyclic (QC) low-density parity-check (LDPC) codes are constructed. All 4-cycles and even 6-cycles are removed in the Tanner graph, and the girth is not less than six. The decoding complexity as well as extension to irregular case is analyzed. Simulation results show that in AWGN and Rayleigh fading channels, the codes can achieve the same error performance as their counterpart PEG codes, and outperform the corresponding MacKay codes and array codes.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Shashi Kiran Chilappagari,et al.  On the Construction of Structured LDPC Codes Free of Small Trapping Sets , 2012, IEEE Transactions on Information Theory.

[3]  Richard D. Wesel,et al.  The Universal Operation of LDPC Codes Over Scalar Fading Channels , 2007, IEEE Transactions on Communications.

[4]  Shu-Tao Xia,et al.  Structured non-binary LDPC codes with large girth , 2007 .

[5]  B. V. K. Vijaya Kumar,et al.  Low complexity LDPC codes for partial response channels , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[6]  Aleksandar Kavcic,et al.  Optimized low-density parity-check codes for partial response channels , 2003, IEEE Communications Letters.

[7]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices , 2004, IEEE Trans. Inf. Theory.

[8]  Jon-Lark Kim,et al.  Explicit construction of families of LDPC codes with no 4-cycles , 2004, IEEE Transactions on Information Theory.

[9]  Jen-Fa Huang,et al.  Construction of One-Coincidence Sequence Quasi-Cyclic LDPC Codes of Large Girth , 2012, IEEE Transactions on Information Theory.

[10]  Shu Lin,et al.  Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure Channels: A Finite Field Approach , 2007, IEEE Transactions on Information Theory.

[11]  Surrogate-channel design of universal LDPC codes , 2006, IEEE Communications Letters.

[12]  Andrew Thangaraj,et al.  Thresholds and scheduling for LDPC-coded partial response channels , 2002 .

[13]  Shu Lin,et al.  Construction of Regular and Irregular LDPC Codes: Geometry Decomposition and Masking , 2007, IEEE Transactions on Information Theory.

[14]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[15]  Kyeongcheol Yang,et al.  Quasi-cyclic LDPC codes for fast encoding , 2005, IEEE Transactions on Information Theory.

[16]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[17]  Chia-Yu Lin,et al.  Operation reduced low‐density parity‐check decoding algorithms for low power communication systems , 2013, Int. J. Commun. Syst..

[18]  Minghua Liu,et al.  Iterative hybrid decoding algorithm for LDPC codes based on attenuation factor , 2012 .

[19]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[20]  Qin Huang,et al.  Quasi-Cyclic LDPC Codes: An Algebraic Construction, Rank Analysis, and Codes on Latin Squares , 2010, IEEE Transactions on Communications.

[21]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[22]  Morteza Esmaeili,et al.  A New Construction of Structured Binary Regular LDPC Codes Based on Steiner Systems with Parameter t>2 , 2012, IEEE Transactions on Communications.

[23]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[24]  Kenneth P. Bogart,et al.  Introductory Combinatorics , 1977 .

[25]  Qin Huang,et al.  Quasi-cyclic LDPC codes: an algebraic construction , 2010, IEEE Transactions on Communications.

[26]  Jie Xu,et al.  Construction of quasicyclic LDPC codes based on the minimum weight codewords of Reed-Solomon codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[27]  Daniel J. Costello,et al.  LDPC block and convolutional codes based on circulant matrices , 2004, IEEE Transactions on Information Theory.

[28]  Paul H. Siegel,et al.  Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels , 2001, IEEE J. Sel. Areas Commun..

[29]  Yang Xiao,et al.  Construction of protograph LDPC codes with circular generator matrices , 2011 .