Load balancing for the parallel adaptive solution of partial differential equations
暂无分享,去创建一个
M. Shephard | J. Flaherty | C. Ozturan | K. Devine | H. deCougny | R. Loy
[1] M. Fiedler. Algebraic connectivity of graphs , 1973 .
[2] Alex Pothen,et al. PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .
[3] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[4] Mark S. Shephard,et al. Automatic three-dimensional mesh generation by the finite octree technique , 1984 .
[5] Mark S. Shephard,et al. Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .
[6] I. Babuska,et al. The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .
[7] I Babuska,et al. The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .
[8] Ernst Rank,et al. An expert system for the optimal mesh design in the hp‐version of the finite element method , 1987 .
[9] Shahid H. Bokhari,et al. A Partitioning Strategy for Nonuniform Problems on Multiprocessors , 1987, IEEE Transactions on Computers.
[10] Charbel Farhat,et al. A simple and efficient automatic fem domain decomposer , 1988 .
[11] J. Oden,et al. The h-p adaptive finite element method for the numerical simulation of compressible flow , 1988 .
[12] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[13] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .
[14] Bernardo Cockburn,et al. The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .
[15] Joseph E. Flaherty,et al. An adaptive mesh-moving and local refinement method for time-dependent partial differential equations , 1990, TOMS.
[16] Horst D. Simon,et al. Partitioning of unstructured problems for parallel processing , 1991 .
[17] Stephen Randolph Wheat. A fine-grained data migration approach to application load balancing on MP mind machines , 1992 .
[18] Joseph JáJá,et al. An Introduction to Parallel Algorithms , 1992 .
[19] Steven Warren Hammond,et al. Mapping unstructured grid computations to massively parallel computers , 1992 .
[20] Joseph E. Flaherty,et al. High-order adaptive methods for parabolic systems , 1992 .
[21] William Gropp,et al. Users manual for the Chameleon Parallel Programming Tools , 1993 .
[22] Thomas J. R. Hughes,et al. An efficient communications strategy for finite element methods on the Connection Machine CM-5 system , 1994 .
[23] J. Flaherty,et al. Parallel, adaptive finite element methods for conservation laws , 1994 .
[24] Stephen R. Wheat,et al. Experience with automatic, dynamic load balancing and adaptive finite element computation , 1994, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.
[25] Joseph E. Flaherty,et al. Parallel Partitioning Strategies for the Adaptive Solution of Conservation Laws , 1995 .
[26] Bruce Hendrickson,et al. An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..
[27] Joseph E. Flaherty,et al. High-Order Finite Element Methods for Singularly Perturbed Elliptic and Parabolic Problems , 1995, SIAM J. Appl. Math..
[28] Martin Berzins,et al. Dynamic load-balancing for PDE solvers on adaptive unstructured meshes , 1995, Concurr. Pract. Exp..
[29] Christoph Schwab,et al. The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..
[30] Erlang Networks. On Load Balancing in , 2022 .