A study on statistically reliable and computationally efficient algorithms for generating local cerebral blood flow parametric images with positron emission tomography

With the advent of positron emission tomography (PET), a variety of techniques have been developed to measure local cerebral blood flow (LCBF) noninvasively in humans. A potential class of techniques, which includes linear least squares (LS), linear weighted least squares (WLS), linear generalized least squares (GLS), and linear generalized weighted least squares (GWLS), is proposed. The statistical characteristics of these methods are examined by computer simulation. The authors present a comparison of these four methods with two other rapid estimation techniques developed by Huang et al. (1982) and Alpert (1984), and two classical methods, the unweighted and weighted nonlinear least squares regression. The results show that these methods can take full advantage of the contribution from the fine temporal sampling data of modern tomographs, and thus provide statistically reliable estimates that are comparable to those obtained from nonlinear LS regression. These methods also have high computational efficiency, and the parameters can be estimated directly from operational equations in one single step. Therefore, they can potentially be used in image-wide estimation of local cerebral blood flow and distribution volume with PET.

[1]  M D Ginsberg,et al.  Emission tomographic measurement of local cerebral blood flow in humans by an in vivo autoradiographic strategy , 1984, Annals of neurology.

[2]  J E Holden,et al.  Cerebral blood flow using PET measurements of fluoromethane kinetics. , 1981, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[3]  I Kanno,et al.  A Determination of the Regional Brain/Blood Partition Coefficient of Water Using Dynamic Positron Emission Tomography , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  Richard E. Carson,et al.  BLD: A Software System for Physiological Data Handling and Model Analysis , 1981 .

[5]  N. Alpert,et al.  Strategy for the Measurement of Regional Cerebral Blood Flow Using Short-Lived Tracers and Emission Tomography , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  G L Brownell,et al.  A model for regional cerebral oxygen distribution during continuous inhalation of 15O2, C15O, and C15O2. , 1978, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[7]  M. Mintun,et al.  Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  R. Frackowiak,et al.  Quantitative Measurement of Regional Cerebral Blood Flow and Oxygen Metabolism in Man Using 15O and Positron Emission Tomography: Theory, Procedure, and Normal Values , 1980, Journal of computer assisted tomography.

[9]  E. J. Hoffman,et al.  Quantitative Measurement of Local Cerebral Blood Flow in Humans by Positron Computed Tomography and 15O-Water , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  Michael E. Phelps,et al.  The C15O2 Build-up Technique to Measure Regional Cerebral Blood Flow and Volume of Distribution of Water , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  M E Phelps,et al.  Measurement of Local Blood Flow and Distribution Volume with Short-Lived Isotopes: A General Input Technique , 1982, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  S. Kety The theory and applications of the exchange of inert gas at the lungs and tissues. , 1951, Pharmacological reviews.

[13]  Iwao Kanno,et al.  Measurement of Cerebral Blood Flow Using Bolus Inhalation of C15O2 and Positron Emission Tomography: Description of the Method and its Comparison with the C15O2 Continuous Inhalation Method , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  G Blomqvist,et al.  On the Construction of Functional Maps in Positron Emission Tomography , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  M. Raichle,et al.  Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  J. Depresseux,et al.  A Method for Local Evaluation of the Volume of Rapidly Exchangeable Water in the Human Brain , 1983 .

[17]  R A Koeppe,et al.  Performance Comparison of Parameter Estimation Techniques for the Quantitation of Local Cerebral Blood Flow by Dynamic Positron Computed Tomography , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  S. Huang,et al.  Weighted Integration Method for Local Cerebral Blood Flow Measurements with Positron Emission Tomography , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  C J Thompson,et al.  Dynamic Positron Emission Tomography for Study of Cerebral Hemodynamics in a Cross Section of the Head Using Positron‐Emitting 68Ga‐EDTA and 77Kr , 1977, Journal of computer assisted tomography.