Vacancy-modulated conductive oxide resistive RAM (VMCO-RRAM): An area-scalable switching current, self-compliant, highly nonlinear and wide on/off-window resistive switching cell

We report a novel self-compliant and self-rectifying resistive switching memory cell, with area-scalable switching currents, featuring a set current density of ~5nA/nm2 (<;9uA for a 40nm-size cell), high on-state half-bias nonlinearity of 102 and low reset current density of <;0.6nA/nm2 (<;1uA@40nm size). The cell can be operated at below ±4V/10ns, with a large on/off window of >102 and retention extrapolates to 10yr at 101°C. The switching stack is fully based on ALD processes, using common high-k dielectrics and has a thickness of <;10nm, meeting the 3D Vertical RRAM requirements. Moreover, we point out the nonlinearity-low-current operation interdependence and discuss the scaling potential of the areal switching RRAM for reliable sub-μA current operation in the 10nm-cell size realm.