PROJETO DE CONTROLADORES ROBUSTOS PARA APLICAÇÕES EM ESTRUTURAS INTELIGENTES UTILIZANDO DESIGUALDADES MATRICIAIS LINEARES

[1]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[2]  Harvey Thomas Banks,et al.  The modeling of piezoceramic patch interactions with shells, plates, and beams , 1995 .

[3]  S. Yang,et al.  Modal Analysis Of Stepped Beams With Piezoelectric Materials , 1994 .

[4]  Stephen P. Boyd,et al.  Control System Analysis and Synthesis via Linear Matrix Inequalities , 1993, 1993 American Control Conference.

[5]  Jean-Claude Golinval,et al.  Placement of Piezoelectric Laminate Actuator for Active Structural Acoustic Control , 2004 .

[6]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[7]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[8]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[9]  P. Haley,et al.  Experimental validation of generalized predictive control for active flutter suppression , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[10]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[11]  L. El Ghaoui,et al.  State-feedback design via linear matrix inequalities: application to a benchmark problem , 1994, 1994 Proceedings of IEEE International Conference on Control and Applications.

[12]  Singiresu S Rao,et al.  Optimal placement of actuators in actively controlled structures using genetic algorithms , 1991 .

[13]  Hemanshu R. Pota,et al.  Multivariable Transfer Functions for a Slewing Piezoelectric Laminate Beam , 1995 .

[14]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[15]  Jerzy T. Sawicki,et al.  STRUCTURAL DAMAGE DETECTION USING MODAL NORMS , 2000 .

[16]  Daniel J. Inman,et al.  Optimal placement of piezoelectric sensor/actuators for smart structures vibration control , 2004 .

[17]  Karolos M. Grigoriadis,et al.  Reduced optimal parameter update in structural systems using LMIs , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[18]  Victor Giurgiutiu,et al.  RECENT ADVANCES IN SMART-MATERIAL ROTOR CONTROL ACTUATION. , 2000 .

[19]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[20]  Daniel J. Inman,et al.  Optimal Design of Piezoelectric Materials for Vibration Damping in Mechanical Systems , 1999 .

[21]  J. Geromel Convex analysis and global optimization of joint actuator location and control problems , 1989 .

[22]  Suhuan Chen,et al.  Integrated structural and control optimization of intelligent structures , 1999 .

[23]  L. H. Yam,et al.  A SYNTHETIC ANALYSIS ON DESIGN OF OPTIMUM CONTROL FOR AN OPTIMIZED INTELLIGENT STRUCTURE , 2002 .

[24]  Edvaldo Assunção,et al.  Robust control to parametric uncertainties in smart structures using linear matrix inequalities , 2004 .

[25]  J. Juang Applied system identification , 1994 .

[26]  Uwe Stöbener,et al.  Active Vibration Control of a Car Body Based on Experimentally Evaluated Modal Parameters , 2001 .

[27]  Darrell L. York Analysis of flutter and flutter suppression via an energy method , 1980 .

[28]  Hugh H. T. Liu,et al.  ROBUST FLIGHT CONTROL: A REAL-TIME SIMULATION INVESTIGATION , 2002 .

[29]  Colin H. Hansen,et al.  Use of genetic algorithms to optimize vibration actuator placement for active control of harmonic interior noise in a cylinder with floor structure , 1996 .

[30]  K. F. Man,et al.  Spacecraft acoustic and random vibration test optimization , 1999 .

[31]  Maurício C. de Oliveira,et al.  Linear output feedback controller design with joint selection of sensors and actuators , 2000, IEEE Trans. Autom. Control..

[32]  Kazuo Tanaka,et al.  Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs , 1998, IEEE Trans. Fuzzy Syst..

[33]  John A. Burns,et al.  A DISTURBANCE-REJECTION PROBLEM FOR A 2-D AIRFOIL , 1997 .

[34]  Vittal S. Rao,et al.  Application of Linear Matrix Inequalities in the Control of Smart Structural Systems , 2000 .

[35]  M.C.M. Teixeira,et al.  On relaxed LMI-based design for fuzzy controllers , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[36]  Minh Q. Phan,et al.  Identification and control of mechanical systems , 2001 .

[37]  S. O. Reza Moheimani,et al.  An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate , 2003 .

[38]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[39]  G. P. Eatwell,et al.  Active control of vibration , 1992 .

[40]  J. F. Ribeiro,et al.  Experiments on Optimal Vibration Control of a Flexible Beam Containing Piezoelectric Sensors and Actuators , 2003 .

[41]  Gustavo Luiz C. M. de Abreu Projeto robusto aplicado no controle de vibrações em estruturas flexíveis com materiais piezelétricos incorporados , 2003 .

[42]  Edvaldo Assunção,et al.  Observer-based state-feedback versus H-infinity output feedback control solved by LMI approach for applications in smart structures , 2005 .

[43]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[44]  Ya-Peng Shen,et al.  The optimal design of piezoelectric actuators for plate vibroacoustic control using genetic algorithms with immune diversity , 2000 .

[45]  In Lee,et al.  Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms , 1999 .

[46]  S. O. R. Moheimani,et al.  Experimental implementation of spatial H/sub /spl infin// control on a piezoelectric-laminate beam , 2002 .

[47]  Daniel J. Inman,et al.  Finite Element Modeling and Active Control of an Inflated Torus Using Piezoelectric Devices , 2001 .

[48]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[49]  Atul Bhaskar,et al.  Estimates of errors in the frequency response of non-classically damped systems , 1995 .

[50]  Stephen J. Elliott,et al.  Active power minimization and power absorption in a plate with force and moment excitation , 1997 .

[51]  Michael J. Brennan,et al.  Using LMI techniques to control intelligent structures , 2003 .

[52]  Tarunraj Singh,et al.  Intelligent beam structures: Timoshenko theory vs. Euler-Bernoulli theory , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[53]  W. Gawronski Dynamics and control of structures : a modal approach , 1998 .

[54]  A Blanguernon,et al.  Active control of a beam using a piezoceramic element , 1999 .

[55]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[56]  Yang Dai Feedback Control of Multi-Story Structures under Seismic Excitations , 2002 .

[57]  Vicente Lopes Junior,et al.  Active Flutter Suppression in a 2-D Airfoil Using Linear Matrix Inequalities , 2006 .

[58]  P. Kabamba,et al.  H2-optimal zeros , 1994, IEEE Trans. Autom. Control..

[59]  L. Ghaoui,et al.  History of linear matrix inequalities in control theory , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[60]  R. J. Wynne,et al.  Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms , 1999 .

[61]  S. C. Southward,et al.  Active Control of Noise and Vibration , 1996 .

[62]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[63]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[64]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[65]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[66]  D. Ring,et al.  A study on active flutter detection and control , 2000, Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093).

[67]  Karolos M. Grigoriadis,et al.  Structural damage detection using strain data via linear matrix inequality based methods , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[68]  H. Panossian,et al.  Balanced Shaker and Sensor Placement for Modal Testing of Large Flexible Structures , 1998 .

[69]  Ya-Peng Shen,et al.  TECHNICAL NOTE: The optimal design of piezoelectric actuators for acoustic control , 2001 .

[70]  Jianhu Jia Optimization of piezoelectric actuator systems for vibration control of flexible structures , 1990 .

[71]  Daniel J. Inman,et al.  Optimal design of smart structures using bonded plezoelectrics for vibration control , 2000 .

[72]  G. Obinata,et al.  Optimal Sensor/actuator Placement for Active Vibration Control Using Explicit Solution of Algebraic Riccati Equation , 2000 .

[73]  K. W. Wang,et al.  An optimal actuator placement methodology for active control of helicopter airframe vibrations , 2001 .