Anisotropy and particle-size effects in nanostructured plasmonic metamaterials.

We study the optical properties of metamaterials formed by layers of metallic nanoparticles. The effective optical constants of these materials are retrieved from the calculated angle-dependent Fresnel reflection coefficients for s and p incident-light polarization. We investigate the degree of anisotropy in the effective permittivity as a function of inter-layer spacing, particle size, filling fraction of the metal, and particle shape. For layers of spherical particles periodically arranged in a hexagonal lattice, the anisotropy disappears for the three inter-layer spacings corresponding to simple cubic (sc), bcc, and fcc volume symmetry. For non-spherical particles, an isotropic response can be still obtained with other values of the inter-layer spacing. Finally, we provide a quantitative answer to the question of how many layers are needed to form an effectively homogeneous metamaterial slab. Surprisingly, only one layer can be enough, except in the spectral range close to the particle plasmon resonances.

[1]  V. Shalaev,et al.  Fabrication of optical negative-index metamaterials: Recent advances and outlook , 2008 .

[2]  R. Sainidou,et al.  Plasmon guided modes in nanoparticle metamaterials. , 2008, Optics express.

[3]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[4]  Sergei A. Tretyakov,et al.  Local constitutive parameters of metamaterials from an effective-medium perspective , 2007 .

[5]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[6]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[7]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[8]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[9]  F. G. D. Abajo,et al.  Plasmon tunability in metallodielectric metamaterials , 2005, 0708.0999.

[10]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[11]  P. Xu,et al.  Study of frequency band gaps in metal dielectric composite materials , 2004 .

[12]  C. Brinker,et al.  Self-Assembly of Ordered, Robust, Three-Dimensional Gold Nanocrystal/Silica Arrays , 2004, Science.

[13]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[14]  Effects of particle shape on the effective permittivity of composite materials with measurements for lattices of cubes , 2002 .

[15]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[16]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[17]  Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency , 2001 .

[18]  Feng Wu,et al.  Quasi-static effective permittivity of periodic composites containing complex shaped dielectric particles , 2001 .

[19]  Frank Caruso,et al.  Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. , 2001 .

[20]  L. Liz‐Marzán,et al.  Optical Properties of Thin Films of Au@SiO2 Particles , 2001 .

[21]  Plasmon-enhanced absorption by optical phonons in metal-dielectric composites , 2001 .

[22]  M. Sigalas,et al.  Three-dimensionally periodic conductive nanostructures: Network versus cermet topologies for metallic PBG , 2001 .

[23]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[24]  Vassilios Yannopapas,et al.  MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals , 2000 .

[25]  S. Jones,et al.  Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles , 2000 .

[26]  N. Alexopoulos,et al.  Effective response functions for photonic bandgap materials , 1999 .

[27]  M. S. Moreno,et al.  Anomalous Packing in Thin Nanoparticle Supercrystals , 1999 .

[28]  M. Pileni,et al.  Collective optical properties of silver nanoparticles organized in two-dimensional superlattices , 1999 .

[29]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[30]  Barrera,et al.  Spectral representations of the electron energy loss in composite media. , 1996, Physical review. B, Condensed matter.

[31]  Ahn,et al.  Effective-medium theories for spheroidal particles randomly oriented on a plane: Application to the optical properties of a SiC whisker-Al2O3 composite. , 1995, Physical review. B, Condensed matter.

[32]  Barrera,et al.  Theory of electron energy loss in a random system of spheres. , 1995, Physical review. B, Condensed matter.

[33]  A. Sihvola,et al.  Chiral Maxwell-Garnett mixing formula , 1989 .

[34]  J. Mantese,et al.  Infrared properties of Pt/Al sup 2 O sup 3 cermet films , 1989 .

[35]  Ross C. McPhedran,et al.  Bounds and exact theories for the transport properties of inhomogeneous media , 1981 .

[36]  G. Milton Concerning bounds on the transport and mechanical properties of multicomponent composite materials , 1981 .

[37]  P. Sheng Theory for the Dielectric Function of Granular Composite Media , 1980 .

[38]  David J. Bergman,et al.  Dielectric constant of a two-component granular composite: A practical scheme for calculating the pole spectrum , 1979 .

[39]  David R. McKenzie,et al.  The conductivity of lattices of spheres - II. The body centred and face centred cubic lattices , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  D. R. McKenzie,et al.  The conductivity of lattices of spheres I. The simple cubic lattice , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[41]  D. Mckenzie,et al.  Exact modelling of cubic lattice permittivity and conductivity , 1977, Nature.

[42]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[43]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .