Anisotropy and particle-size effects in nanostructured plasmonic metamaterials.
暂无分享,去创建一个
[1] V. Shalaev,et al. Fabrication of optical negative-index metamaterials: Recent advances and outlook , 2008 .
[2] R. Sainidou,et al. Plasmon guided modes in nanoparticle metamaterials. , 2008, Optics express.
[3] F. D. Abajo,et al. Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.
[4] Sergei A. Tretyakov,et al. Local constitutive parameters of metamaterials from an effective-medium perspective , 2007 .
[5] Vladimir M. Shalaev,et al. Optical cloaking with metamaterials , 2006, physics/0611242.
[6] David R. Smith,et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.
[7] David R. Smith,et al. Controlling Electromagnetic Fields , 2006, Science.
[8] Luis M Liz-Marzán,et al. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.
[9] F. G. D. Abajo,et al. Plasmon tunability in metallodielectric metamaterials , 2005, 0708.0999.
[10] David R. Smith,et al. Metamaterials and Negative Refractive Index , 2004, Science.
[11] P. Xu,et al. Study of frequency band gaps in metal dielectric composite materials , 2004 .
[12] C. Brinker,et al. Self-Assembly of Ordered, Robust, Three-Dimensional Gold Nanocrystal/Silica Arrays , 2004, Science.
[13] Willie J Padilla,et al. Terahertz Magnetic Response from Artificial Materials , 2004, Science.
[14] Effects of particle shape on the effective permittivity of composite materials with measurements for lattices of cubes , 2002 .
[15] F. G. D. Abajo,et al. Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .
[16] D. Smith,et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.
[18] Feng Wu,et al. Quasi-static effective permittivity of periodic composites containing complex shaped dielectric particles , 2001 .
[19] Frank Caruso,et al. Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. , 2001 .
[20] L. Liz‐Marzán,et al. Optical Properties of Thin Films of Au@SiO2 Particles , 2001 .
[21] Plasmon-enhanced absorption by optical phonons in metal-dielectric composites , 2001 .
[22] M. Sigalas,et al. Three-dimensionally periodic conductive nanostructures: Network versus cermet topologies for metallic PBG , 2001 .
[23] J. Pendry,et al. Negative refraction makes a perfect lens , 2000, Physical review letters.
[24] Vassilios Yannopapas,et al. MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals , 2000 .
[25] S. Jones,et al. Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles , 2000 .
[26] N. Alexopoulos,et al. Effective response functions for photonic bandgap materials , 1999 .
[27] M. S. Moreno,et al. Anomalous Packing in Thin Nanoparticle Supercrystals , 1999 .
[28] M. Pileni,et al. Collective optical properties of silver nanoparticles organized in two-dimensional superlattices , 1999 .
[29] F. G. D. Abajo,et al. RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .
[30] Barrera,et al. Spectral representations of the electron energy loss in composite media. , 1996, Physical review. B, Condensed matter.
[31] Ahn,et al. Effective-medium theories for spheroidal particles randomly oriented on a plane: Application to the optical properties of a SiC whisker-Al2O3 composite. , 1995, Physical review. B, Condensed matter.
[32] Barrera,et al. Theory of electron energy loss in a random system of spheres. , 1995, Physical review. B, Condensed matter.
[33] A. Sihvola,et al. Chiral Maxwell-Garnett mixing formula , 1989 .
[34] J. Mantese,et al. Infrared properties of Pt/Al sup 2 O sup 3 cermet films , 1989 .
[35] Ross C. McPhedran,et al. Bounds and exact theories for the transport properties of inhomogeneous media , 1981 .
[36] G. Milton. Concerning bounds on the transport and mechanical properties of multicomponent composite materials , 1981 .
[37] P. Sheng. Theory for the Dielectric Function of Granular Composite Media , 1980 .
[38] David J. Bergman,et al. Dielectric constant of a two-component granular composite: A practical scheme for calculating the pole spectrum , 1979 .
[39] David R. McKenzie,et al. The conductivity of lattices of spheres - II. The body centred and face centred cubic lattices , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[40] D. R. McKenzie,et al. The conductivity of lattices of spheres I. The simple cubic lattice , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[41] D. Mckenzie,et al. Exact modelling of cubic lattice permittivity and conductivity , 1977, Nature.
[42] R. W. Christy,et al. Optical Constants of the Noble Metals , 1972 .
[43] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .