H∞ Guaranteed Cost Computation by Means of Parameter Dependent Lyapunov Functions
暂无分享,去创建一个
Ricardo C. L. F. Oliveira | Valter J. S. Leite | Pedro L. D. Peres | Vinicius F. Montagner | P. Peres | R. C. Oliveira | V. Montagner | P. J. Oliveira | P. J. de Oliveira | R. Oliveira
[1] B. Barmish. Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .
[2] Pedro Luis Dias Peres,et al. Hinfinityand H2 guaranteed costs computation for uncertain linear systems , 1997, Int. J. Syst. Sci..
[3] P. Peres,et al. Optimal H ∞ -state feedback control for continuous-time linear systems , 1994 .
[4] P. Khargonekar,et al. State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .
[5] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[6] J. Bernussou,et al. A new robust D-stability condition for real convex polytopic uncertainty , 2000 .
[7] Sérgio Ricardo de Souza,et al. H∞ control of discrete-time uncertain systems , 1994, IEEE Trans. Autom. Control..
[8] Sérgio Ricardo de Souza,et al. ℋ2 guaranteed cost control for uncertain discrete-time linear systems , 1993 .
[9] J. Geromel,et al. Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .
[10] J. Geromel,et al. A new discrete-time robust stability condition , 1999 .
[11] Sérgio Ricardo de Souza,et al. Convex analysis of discrete-time uncertain H/sub infinity / control problems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.
[12] Pedro Luis Dias Peres,et al. An LMI condition for the robust stability of uncertain continuous-time linear systems , 2002, IEEE Trans. Autom. Control..
[13] Pedro Luis Dias Peres,et al. An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, IEEE Trans. Autom. Control..
[14] P. Peres,et al. H ∞ guaranteed cost control for uncertain continuous-time linear systems , 1993 .
[15] P. Peres,et al. a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .
[16] P. Khargonekar,et al. Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .
[17] Isaac Kaminer,et al. Mixed H2/H∞ control for discrete-time systems via convex optimization , 1992, American Control Conference.
[18] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[19] Pedro Luis Dias Peres,et al. A less conservative LMI condition for the robust stability of discrete-time uncertain systems , 2001, Syst. Control. Lett..