Criterion for SEU occurrence in SRAM deduced from circuit and device Simulations in case of neutron-induced SER

A reliable criterion for SEU occurrence simulation is presented. It expresses the relationship existing at threshold between the magnitude and duration of the ion-induced parasitic pulse. This criterion can be obtained by both three-dimensional device and SPICE simulations. Using this criterion, the simulated and experimental SER on 130 and 250 nm technologies are shown to be in good agreement.

[1]  R. Baumann The impact of technology scaling on soft error rate performance and limits to the efficacy of error correction , 2002, Digest. International Electron Devices Meeting,.

[2]  J. Gasiot,et al.  A new approach for the prediction of the neutron-induced SEU rate , 1998 .

[3]  S. Wender,et al.  Single event phenomena in atmospheric neutron environments , 1993 .

[4]  J. Olsen,et al.  Neutron-induced single event upsets in static RAMS observed a 10 km flight attitude , 1993 .

[5]  F. Wrobel,et al.  Monte-Carlo simulations to quantify neutron-induced multiple bit upsets in advanced SRAMs , 2005, IEEE Transactions on Nuclear Science.

[6]  Guillaume Hubert,et al.  Study of basic mechanisms induced by an ionizing particle on simple structures , 1999, 1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471).

[7]  F. W. Sexton,et al.  Monte Carlo exploration of neutron-induced SEU-sensitive volumes in SRAMs , 2002 .

[8]  F. Saigne,et al.  Neutron-induced SEU in bulk SRAMs in terrestrial environment: Simulations and experiments , 2004, IEEE Transactions on Nuclear Science.

[9]  Guillaume Hubert,et al.  Detailed analysis of secondary ions' effect for the calculation of neutron-induced SER in SRAMs , 2001 .

[10]  Guillaume Hubert,et al.  Device simulation study of the SEU sensitivity of SRAMs to internal ion tracks generated by nuclear reactions , 2001 .

[11]  Gilles Gasiot,et al.  Comparisons of soft error rate for SRAMs in commercial SOI and bulk below the 130-nm technology node , 2003 .

[12]  Eugene Normand SINGLE EVENT EFFECTS IN AVIONICS AND ON THE GROUND , 2004 .

[13]  K. Johansson,et al.  In-flight and ground testing of single event upset sensitivity in static RAMs , 1997 .

[14]  J. Farren,et al.  The single event upset environment for avionics at high latitude , 1994 .

[15]  A. Taber,et al.  Single event upset in avionics , 1993 .

[16]  J. Pontcharra,et al.  SEU sensitivity of bulk and SOI technologies to 14-MeV neutrons , 2002 .

[17]  T. Baker,et al.  Altitude and latitude variations in avionics SEU and atmospheric neutron flux , 1993 .

[18]  P. Dodd,et al.  Various SEU conditions in SRAM studied by 3-D device simulation , 2001 .

[19]  J. Gasiot,et al.  Threshold LET for SEU induced by low energy ions [in CMOS memories] , 1999 .

[20]  K. Johansson,et al.  Neutron induced single-word multiple-bit upset in SRAM , 1999 .

[21]  Frédéric Wrobel,et al.  Incidence of multi-particle events on soft error rates caused by n-Si nuclear reactions , 2000 .

[22]  M. Calvet,et al.  Simulation of nucleon-induced nuclear reactions in a simplified SRAM structure: scaling effects on SEU and MBU cross sections , 2001 .

[23]  Robert Ecoffet,et al.  SEU response of an entire SRAM cell simulated as one contiguous three dimensional device domain , 1998 .

[24]  Frédéric Wrobel Elaboration d'une base de données des particules responsables des dysfonctionnements dans les composants électroniques exposés à des flux de protons ou de neutrons. Application au calcul des taux d'erreurs dans les mémoires sram en environnement radiatif naturel , 2002 .

[25]  E. Normand Single event upset at ground level , 1996 .

[26]  Robert Ecoffet,et al.  Determination of key parameters for SEU occurrence using 3-D full cell SRAM simulations , 1999 .