Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors

In this paper, we introduce a liquid core antiresonant reflecting optical waveguide (ARROW) as a novel optofluidic device that can be used to create innovative and highly functional microsensors. Liquid core ARROWs, with their dual ability to guide the light and the fluids in the same microchannel, have shown great potential as an optofluidic tool for quantitative spectroscopic analysis. ARROWs feature a planar architecture and, hence, are particularly attractive for chip scale integrated system. Step by step, several improvements have been made in recent years towards the implementation of these waveguides in a complete on-chip system for highly-sensitive detection down to the single molecule level. We review applications of liquid ARROWs for fluids sensing and discuss recent results and trends in the developments and applications of liquid ARROW in biomedical and biochemical research. The results outlined show that the strong light matter interaction occurring in the optofluidic channel of an ARROW and the versatility offered by the fabrication methods makes these waveguides a very promising building block for optofluidic sensor development.

[1]  Hongying Zhu,et al.  Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors. , 2009, Analytical chemistry.

[2]  P. Sarro,et al.  Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides , 2008 .

[3]  Carlos Angulo Barrios,et al.  Optical Slot-Waveguide Based Biochemical Sensors , 2009, Sensors.

[4]  Qingling Li,et al.  Surface-enhanced Raman scattering microfluidic sensor , 2013 .

[5]  T. D. Yuzvinsky,et al.  Hybrid optofluidic integration. , 2013, Lab on a chip.

[6]  R. Bernini,et al.  Design and Optimization of an Optofluidic Ring Resonator Based on Liquid-Core Hybrid ARROWs , 2014, IEEE Photonics Journal.

[7]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[8]  Augustine Goba,et al.  Comprehensive panel of real-time TaqMan polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and New World hantaviruses. , 2010, The American journal of tropical medicine and hygiene.

[9]  Harold G. Craighead,et al.  Virus detection using nanoelectromechanical devices , 2004 .

[10]  Andreas Neyer,et al.  PDMS microfluidic chip with integrated waveguides for optical detection , 2006 .

[11]  D. Psaltis,et al.  Nanofluidic tuning of photonic crystal circuits , 2006 .

[12]  A. Hawkins,et al.  Electro-optical detection of single λ-DNA. , 2015, Chemical communications.

[13]  A. Hawkins,et al.  Hollow waveguides with low intrinsic photoluminescence fabricated with Ta(2)O(5) and SiO(2) films. , 2011, Applied physics letters.

[14]  Michal Lipson,et al.  On-chip spectrophotometry for bioanalysis using microring resonators , 2011, Biomedical optics express.

[15]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[16]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[17]  Bin Wu,et al.  Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission , 2010, IEEE Photonics Technology Letters.

[18]  Laura M. Lechuga,et al.  Integrated optical devices for lab‐on‐a‐chip biosensing applications , 2012 .

[19]  L K Chin,et al.  A reconfigurable optofluidic Michelson interferometer using tunable droplet grating. , 2010, Lab on a chip.

[20]  Stephanus Büttgenbach,et al.  Monolithic PDMS passband filters for fluorescence detection. , 2010, Lab on a chip.

[21]  A. Hawkins,et al.  Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[23]  M. A. Stott,et al.  Optofluidic analysis system for amplification-free, direct detection of Ebola infection , 2015, Scientific Reports.

[24]  M. Lapsley,et al.  A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection. , 2011, Lab on a chip.

[25]  R. Mathies,et al.  Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications. , 2014, Biomicrofluidics.

[26]  P. Sarro,et al.  Development and characterization of an integrated silicon micro flow cytometer , 2006, Analytical and bioanalytical chemistry.

[27]  Romeo Bernini,et al.  Silicon micromachined hollow optical waveguides for sensing applications , 2002 .

[28]  P. Sarro,et al.  Microfluidic sensor based on integrated optical hollow waveguides. , 2004, Optics letters.

[29]  P. Sarro,et al.  A hybrid silicon-PDMS optofluidic platform for sensing applications. , 2014, Biomedical optics express.

[30]  Romeo Bernini,et al.  Integrated silicon optofluidic ring resonator , 2010 .

[31]  M. A. Stott,et al.  Optofluidic wavelength division multiplexing for single-virus detection , 2015, Proceedings of the National Academy of Sciences.

[32]  G. Whitesides,et al.  Components for integrated poly(dimethylsiloxane) microfluidic systems , 2002, Electrophoresis.

[33]  A. Hawkins,et al.  Highly efficient fluorescence detection in picoliter volume liquid-core waveguides , 2005 .

[34]  Aaron R. Hawkins,et al.  Hollow waveguide optimization for fluorescence based detection , 2008, SPIE MOEMS-MEMS.

[35]  R. J. Black,et al.  Loss calculations for antiresonant waveguides , 1993 .

[36]  B. Eggleton,et al.  Antiresonant reflecting photonic crystal optical waveguides. , 2002, Optics letters.

[37]  D. Kopp,et al.  Optofluidic router based on tunable liquid-liquid mirrors. , 2014, Lab on a chip.

[38]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[39]  A. Hawkins,et al.  Selective Thin-Film Deposition for Optofluidic Platforms With Optimized Transmission , 2011, IEEE Photonics Technology Letters.

[40]  A. Hawkins,et al.  Integrated hollow waveguides with arch-shaped cores , 2006, IEEE Photonics Technology Letters.

[41]  Jun Wang,et al.  Recent advances in electric analysis of cells in microfluidic systems , 2008, Analytical and bioanalytical chemistry.

[42]  F. Baldini,et al.  Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis. , 2012, Lab on a chip.

[43]  R. Bashir,et al.  Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips. , 2007, Lab on a chip.

[44]  Aaron R. Hawkins,et al.  Correlated Electrical and Optical Analysis of Single Nanoparticles and Biomolecules on a Nanopore-Gated Optofluidic Chip , 2014, Nano letters.

[45]  F. Ligler,et al.  Evanescent wave fluorescence biosensors. , 2005, Biosensors & bioelectronics.

[46]  L. Lechuga,et al.  An integrated optical interferometric nanodevice based on silicon technology for biosensor applications , 2003 .

[47]  H. Schmidt,et al.  Optimization of Interface Transmission Between Integrated Solid Core and Optofluidic Waveguides , 2012, IEEE Photonics Technology Letters.

[48]  D. Deamer,et al.  Loss-based optical trap for on-chip particle analysis. , 2009, Lab on a chip.

[49]  Frank F Bier,et al.  Integrated planar optical waveguide interferometer biosensors: a comparative review. , 2014, Biosensors & bioelectronics.

[50]  Xudong Fan,et al.  Characterization of sensing capability of optofluidic ring resonator biosensors , 2010 .

[51]  Holger Schmidt,et al.  Optical particle sorting on an optofluidic chip. , 2013, Optics express.

[52]  Romeo Bernini,et al.  Optofluidic Approaches for Enhanced Microsensor Performances , 2014, Sensors.

[53]  Aaron S. Anderson,et al.  Waveguide-Based Biosensors for Pathogen Detection , 2009, Sensors.

[54]  Peng Fei,et al.  A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides. , 2012, Lab on a chip.

[55]  K. Mogensen,et al.  Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. , 2003, Applied optics.

[56]  H Schmidt,et al.  Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip. , 2011, Lab on a chip.

[57]  A. Hawkins,et al.  Optofluidic particle concentration by a long-range dual-beam trap. , 2009, Optics letters.

[58]  Jun Kameoka,et al.  An optofluidic device for surface enhanced Raman spectroscopy. , 2007, Lab on a chip.

[59]  Holger Schmidt,et al.  Optofluidic waveguides: I. Concepts and implementations , 2008, Microfluidics and nanofluidics.

[60]  G. Testa,et al.  Planar Silicon-Polydimethylsiloxane Optofluidic Ring Resonator Sensors , 2016, IEEE Photonics Technology Letters.

[61]  H. P. Lee,et al.  Optofluidic variable-focus lenses for light manipulation. , 2012, Lab on a chip.

[62]  Arnan Mitchell,et al.  Optofluidics incorporating actively controlled micro- and nano-particles. , 2012, Biomicrofluidics.

[63]  Pamela Abshire,et al.  Optical filtering technologies for integrated fluorescence sensors. , 2007, Lab on a chip.

[64]  G. Stemme,et al.  A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. , 2010, Lab on a chip.

[65]  Christian Grillet,et al.  Compact tunable microfluidic interferometer. , 2004, Optics express.

[66]  D. Lim,et al.  A rapid detection method for Vaccinia virus, the surrogate for smallpox virus , 2004, Biosensors and Bioelectronics.

[67]  Roberta Ramponi,et al.  Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. , 2010, Lab on a chip.

[68]  Romeo Bernini,et al.  Liquid Core ARROW Waveguides by Atomic Layer Deposition , 2010, IEEE Photonics Technology Letters.

[69]  Jeongan Choi,et al.  Integrated micro-optofluidic platform for real-time detection of airborne microorganisms , 2015, Scientific Reports.

[70]  Ulrike Wallrabe,et al.  Variable optofluidic slit aperture , 2016, Light: Science & Applications.

[71]  A. Hawkins,et al.  Integrated ARROW Waveguides for Molecule Specific Surface-enhanced Raman Sensing , 2006, 2006 16th Biennial University/Government/Industry Microelectronics Symposium.

[72]  Romeo Bernini,et al.  Integrated silicon optical sensors based on hollow core waveguide , 2007, SPIE OPTO.

[73]  A. Hawkins,et al.  Integrated ARROW waveguides with hollow cores. , 2004, Optics express.

[74]  D. Deamer,et al.  Integrated optical waveguides with liquid cores , 2004 .

[75]  A. Hawkins,et al.  On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides , 2007 .

[76]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Toshihiko Baba,et al.  Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions , 1992 .

[78]  A. Hawkins,et al.  Optical characterization of arch-shaped ARROW waveguides with liquid cores. , 2005, Optics express.

[79]  D. Deamer,et al.  Planar optofluidic chip for single particle detection, manipulation, and analysis. , 2007, Lab on a chip.

[80]  A. Hawkins,et al.  Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip. , 2010, Lab on a chip.

[81]  D. Deamer,et al.  Single-molecule detection sensitivity using planar integrated optics on a chip. , 2006, Optics letters.

[82]  A. Hawkins,et al.  Waveguide loss optimization in hollow-core ARROW waveguides. , 2005, Optics express.

[83]  Yongfeng Mei,et al.  Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications. , 2010, ACS nano.

[84]  Lukas Novotny,et al.  Nano-optofluidic detection of single viruses and nanoparticles. , 2010, ACS nano.

[85]  R. Bernini,et al.  Hybrid Silicon-PDMS Optofluidic ARROW Waveguide , 2012, IEEE Photonics Technology Letters.

[86]  Basil I. Swanson,et al.  Pathogen detection using single mode planar optical waveguides , 2005 .

[87]  A. Meller,et al.  Optical sensing and analyte manipulation in solid-state nanopores. , 2015, The Analyst.

[88]  Holger Schmidt,et al.  Tailorable integrated optofluidic filters for biomolecular detection. , 2011, Lab on a chip.

[89]  D. Deamer,et al.  Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip. , 2009, Biosensors & bioelectronics.

[90]  M Selim Ünlü,et al.  Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg detection. , 2014, ACS nano.

[91]  A. Hawkins,et al.  Optimized piranha etching process for SU8-based MEMS and MOEMS construction. , 2010, Journal of micromechanics and microengineering : structures, devices, and systems.

[92]  Ray T. Chen,et al.  Ultralow-loss waveguide crossings for the integration of microfluidics and optical waveguide sensors , 2015, Photonics West - Biomedical Optics.

[93]  K. Mogensen,et al.  Monolithic integration of microfluidic channels and optical waveguides in silica on silicon. , 2001, Applied optics.

[94]  H. Fouckhardt,et al.  Integrated optical detection cell based on Bragg reflecting waveguides , 1995 .

[95]  S. Berneschi,et al.  High Q silica microbubble resonators fabricated by arc discharge. , 2011, Optics letters.

[96]  P. Sarro,et al.  A $\hbox{2}\times\hbox{2}$ Optofluidic Multimode Interference Coupler , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[97]  A. Hawkins,et al.  Optofluidic notch filter integration by lift-off of thin films , 2010, Optics express.

[98]  Romeo Bernini,et al.  High-visibility optofluidic Mach-Zehnder interferometer. , 2010, Optics letters.

[99]  Patrick Dumais,et al.  Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer. , 2008, Optics express.