New trends in infrared detector technology

Abstract Recent efforts in IR detector research have been directed towards improving the performance of single element devices, large electronically scanned arrays and higher operating temperature. Another important aim is to make IR detectors cheaper and more convenient to use. New trends in photon and thermal IR detector technologies are discussed: HgCdTe photodiodes, Schottky-barrier photoemissive devices, GaAs/AlGaAs intersubband quantum well photoconductors and ways to improve the performance of near room-temperature detectors. Also the latest achievements in micromachined bolometer arrays are presented. Comparison of different types of detectors with present stage of HgCdTe technology achievements is undertaken.

[1]  T. Ashley,et al.  A heterojunction minority carrier barrier for InSb devices , 1993 .

[2]  B. F. Levine,et al.  InGaAs/InP long wavelength quantum well infrared photodetectors , 1991 .

[3]  J. Piotrowski,et al.  Monolithic optically immersed HgCdTe IR detectors , 1989 .

[4]  Yael Nemirovsky,et al.  Trapping effects in HgCdTe , 1991 .

[5]  F. F. Sizov,et al.  Semiconductor superlattices and quantum wells for infrared optoelectronics , 1993 .

[6]  E. Gertner,et al.  Material characteristics of Hg1−xCdx > Te grown by organometallic vapor phase epitaxy , 1988 .

[7]  Marian Nowak,et al.  Photoelectromagnetic effect in semiconductors and its applications , 1987 .

[8]  J.Y. Wong,et al.  Effect of trap tunneling on the performance of long-wavelength Hg1-xCdxTe photodiodes , 1980, IEEE Transactions on Electron Devices.

[9]  J. M. Lloyd,et al.  Thermal Imaging Systems , 1975 .

[10]  Ronald E. Leibenguth,et al.  Long-wavelength 128*128 GaAs quantum well infrared photodetector arrays , 1991 .

[11]  Y. Nemirovsky,et al.  Tunneling and 1/f noise currents in HgCdTe photodiodes , 1992 .

[12]  R. Whatmore Pyroelectric ceramics and devices for thermal infra-red detection and imaging , 1991 .

[13]  Jozef Piotrowski,et al.  Room temperature IR photodetector with electromagnetic carrier depletion , 1990 .

[14]  T Ashley,et al.  Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques , 1991 .

[15]  M. B. Reine,et al.  Key issues in HgCdTe‐based focal plane arrays: An industry perspective , 1992 .

[16]  Amnon Yariv,et al.  Performance limitations of GaAs/AlGaAs infrared superlattices , 1989 .

[17]  J. Thompson,et al.  The growth of CMT on GaAs for high quality linear arrays of MWIR and LWIR photodiodes , 1991 .

[18]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[19]  Jozef Piotrowski,et al.  Near room-temperature IR photo-detectors , 1991 .

[20]  M. H. Kalisher,et al.  HgCdTe 128 × 128 infrared focal plane arrays on alternative substrates of CdZnTe/GaAs/Si , 1990 .

[21]  Yael Nemirovsky,et al.  Tunneling and dark currents in HgCdTe photodiodes , 1989 .

[22]  J. Maserjian,et al.  Novel Si1−xGex/Si heterojunction internal photoemission long‐wavelength infrared detectors , 1990 .

[23]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[24]  J. M. Kuo,et al.  Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors , 1992 .

[25]  R. Watton,et al.  Ferroelectric materials and devices in infrared detection and imaging , 1989 .

[26]  C. Ito,et al.  HgCdTe on GaAs/Si for mid‐wavelength infrared focal plane arrays , 1990 .

[27]  T. Ashley,et al.  Non-equilibrium modes of operation for infrared detectors , 1986 .

[28]  N T Gordon Design of Hg1-xCdxTe infrared detector arrays using optical immersion with microlenses to achieve a higher operating temperature , 1991 .

[29]  Antoni Rogalski,et al.  Intrinsic infrared detectors , 1988 .

[30]  J. M. Kuo,et al.  Extended long‐wavelength λ=11–15‐μm GaAs/AlxGa1−xAs quantum‐well infrared photodetectors , 1991 .

[31]  A. Rogalski,et al.  Performance of p+−n HgCdTe photodiodes , 1992 .

[32]  B. F. Levine,et al.  Dependence of the performance of GaAs/AlGaAs quantum well infrared photodetectors on doping and bias , 1991 .

[33]  A. S. Jensen,et al.  Current Readout Of Infrared Detectors , 1987 .

[34]  C.K. Chen,et al.  Long-wavelength Ge/sub x/Si/sub 1-x//Si heterojunction infrared detectors and 400*400-element imager arrays , 1991, IEEE Electron Device Letters.

[35]  J. G. Pasko,et al.  Long and middle wavelength infrared photodiodes fabricated with Hg1−x CdxTe grown by molecular‐beam epitaxy , 1989 .

[36]  B. F. Levine,et al.  High sensitivity low dark current 10 μm GaAs quantum well infrared photodetectors , 1990 .

[37]  Majid Zandian,et al.  Planar p‐on‐n HgCdTe heterostructure photovoltaic detectors , 1993 .

[38]  J. Bajaj,et al.  MOCVD Hg1-xCdxTe/GaAs for IR detectors , 1990 .

[39]  Lester J. Kozlowski,et al.  LWIR 128*128 GaAs/AlGaAs multiple quantum well hybrid focal plane array , 1991 .

[40]  Majid Zandian,et al.  Molecular‐beam epitaxy growth and in situ arsenic doping of p‐on‐n HgCdTe heterojunctions , 1991 .

[41]  E. W. Jones,et al.  A novel Si-based LWIR detector: the SiGe/Si heterojunction internal photoemission detector , 1990, International Technical Digest on Electron Devices.

[42]  T. Ashley,et al.  Nonequilibrium devices for infra-red detection , 1985 .

[43]  D. T. Cheung,et al.  Infrared focal planes in intrinsic semiconductors , 1978 .

[44]  J. D. Blackwell,et al.  HgCdTe on sapphire — A new approach to infrared detector arrays , 1985 .

[45]  Lester J. Kozlowski,et al.  256*256 hybrid HgCdTe infrared focal plane arrays , 1991 .

[46]  Masafumi Kimata,et al.  A 512/spl times/512-element PtSi Schottky-barrier infrared image sensor , 1987 .

[47]  E. Blazejewski,et al.  P-on-n arsenic-activated junctions in MOCVD LWIR HgCdTe/GaAs , 1990 .

[48]  C. T. Elliott,et al.  Non-equilibrium modes of operation of narrow-gap semiconductor devices , 1990 .

[49]  J. G. Pasko,et al.  Current generation mechanisms in small band gap HgCdTe p-n junctions fabricated by ion implantation , 1988 .

[50]  Barry F. Levine,et al.  10- mu m GaAs/AlGaAs multiquantum well scanned array infrared imaging camera , 1991 .

[51]  L. Bubulac The role of epitaxy and substrate on junction formation in ion-implanted HgCdTe , 1985 .

[52]  Yael Nemirovsky,et al.  Passivation of mercury cadmium telluride surfaces , 1989 .

[53]  A. M. White,et al.  The characteristics of minority-carrier exclusion in narrow direct gap semiconductors , 1985 .

[54]  P. Norton Infrared image sensors , 1991 .

[55]  J. M. Kuo,et al.  19 m cutoff long-wavelength GaAs/AlxGa1-xAs quantum-well infrared photodetectors , 1992 .

[56]  P. W. Norton,et al.  Growth and characterization of P-on-n HgCdTe liquid-phase epitaxy heterojunction material for 11-18 μm applications , 1991 .

[57]  B. Levine Device physics of quantum well infrared photodetectors , 1993 .

[58]  E. W. Jones,et al.  SiGe/Si heterojunction internal photoemission long-wavelength infrared detectors fabricated by molecular beam epitaxy , 1991 .

[59]  W. Anderson,et al.  Field ionization of deep levels in semiconductors with applications to Hg1−xCdxTe p‐n junctions , 1982 .