Probabilistic Model Checking of Contention Resolution in the IEEE 802.15.4 Low-Rate Wireless Personal Area Network Protocol

The international standard IEEE 802.15.4 defines low-rate wireless personal area networks, a central communication infrastructure of pervasive computing. In order to avoid conflicts caused by multiple devices transmitting at the same time, it uses a contention resolution algorithm based on randomised exponential backoff that is similar to the ones used in IEEE 802.3 for Ethernet and IEEE 802.11 for Wireless LAN. We model the protocol using probabilistic timed automata, a formalism in which both nondeterministic and probabilistic choice can be represented. The probabilistic timed automaton is transformed into a finite-state Markov decision process via a property-preserving integral-time semantics. Using the probabilistic model checker PRISM, we verify correctness properties, compare different operation modes of the protocol, and analyse performance and accuracy of different model abstractions.

[1]  Cyrus Derman,et al.  Finite State Markovian Decision Processes , 1970 .

[2]  Alon Itai,et al.  Timing Verification by Successive Approximation , 1992, CAV.

[3]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[4]  Conrado Daws,et al.  Two examples of verification of multirate timed automata with Kronos , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[5]  Thomas A. Henzinger,et al.  A User Guide to HyTech , 1995, TACAS.

[6]  Stavros Tripakis,et al.  L'analyse formelle des systèmes temporisés en pratique. (The Formal Analysis of Timed Systems in Practice) , 1998 .

[7]  Stavros Tripakis Timed Diagnostics for Reachability Properties , 1999, TACAS.

[8]  R. Segala,et al.  Automatic Verification of Real-Time Systems with Discrete Probability Distributions , 1999, ARTS.

[9]  Dirk Beyer,et al.  Improvements in BDD-Based Reachability Analysis of Timed Automata , 2001, FME.

[10]  Reinhard German,et al.  Performance modeling of IEEE 802.11 wireless LANs with stochastic Petri nets , 2001, Perform. Evaluation.

[11]  Marta Z. Kwiatkowska,et al.  Probabilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol , 2002, PAPM-PROBMIV.

[12]  Marta Z. Kwiatkowska,et al.  Performance analysis of probabilistic timed automata using digital clocks , 2003, Formal Methods Syst. Des..

[13]  William G. Scanlon,et al.  Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[14]  Marta Z. Kwiatkowska,et al.  Symbolic model checking for probabilistic timed automata , 2007, Inf. Comput..

[15]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[16]  Marta Z. Kwiatkowska,et al.  Probabilistic model checking in practice: case studies with PRISM , 2005, PERV.

[17]  Thomas Hérault,et al.  Probabilistic Model Checking of the CSMA/CD Protocol Using PRISM and APMC , 2005, AVoCS.

[18]  Denis C. Daly,et al.  Energy efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks: modeling and improvement perspectives , 2005, Design, Automation and Test in Europe.

[19]  António Pacheco,et al.  Model checking expected time and expected reward formulae with random time bounds , 2006, Comput. Math. Appl..

[20]  Andrew Hinton,et al.  PRISM: A Tool for Automatic Verification of Probabilistic Systems , 2006, TACAS.

[21]  Anurag Kumar,et al.  Performance evaluation of an IEEE 802.15.4 sensor network with a star topology , 2008, Wirel. Networks.