Aromatic Carbonyl Derivative Polymers as High‐Performance Li‐Ion Storage Materials

[1]  Liangjie Yuan,et al.  Synthesis, structures and electrochemical properties of LixNi1−xO , 2005 .

[2]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[3]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[4]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[5]  T. Ohsaki,et al.  STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF LITHIATED POLYMERIZED AROMATICS. ANODES FOR LITHIUM-ION CELLS , 1995 .

[6]  M. Armand,et al.  Novel Cathode Materials Based on Organic Couples for Lithium Batteries , 1997 .

[7]  H. Freund,et al.  π-electron delocalization in poly(p-phenylene), poly(p-phenylene sulfide), and poly(p-phenylene oxide) , 1983 .

[8]  Jaephil Cho,et al.  A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. , 2003, Angewandte Chemie.

[9]  Karl,et al.  3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography. , 1999, Acta crystallographica. Section B, Structural science.

[10]  Yunhong Zhou,et al.  Aniline-based polyorganodisulfide redox system of high energy for secondary lithium batteries , 2004 .

[11]  E. Campani,et al.  Vibrational spectra and assignment of poly-(p-phenylene sulfide) and its oligomers , 1989 .

[12]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[13]  Yang-Kook Sun,et al.  Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. , 2005, Journal of the American Chemical Society.

[14]  Yan Yu,et al.  Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. , 2005, Angewandte Chemie.

[15]  Kristian O. Sylvester-Hvid Two-dimensional simulations of CuPc-PCTDA solar cells: the importance of mobility and molecular pi stacking. , 2006, The journal of physical chemistry. B.

[16]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[17]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[18]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[19]  Ju-tang Sun,et al.  Simple, rapid and accurate determination of lattice composition and evaluation of electrochemical properties of LixNi2 − xO2 electrode material for lithium ion battery by a novel method , 2006 .

[20]  John R. Owen,et al.  Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries , 2003 .

[21]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[22]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[23]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[24]  Ju-tang Sun,et al.  Synthesis and electrochemical characterization of nonstoichiometry spinel phase (LixMn1.93Y0.02O4) for lithium ion battery applications , 2003 .

[25]  N. Karl,et al.  Structure of perylene-tetracarboxylic-dianhydride thin films on alkali halide crystal substrates , 1992 .