Bounded Model Checking for the Existential Fragment of TCTL-G and Diagonal Timed Automata

Bounded Model Checking (BMC) is one of the well known SAT based symbolic model checking techniques. It consists in searching for a counterexample of a particular length, and generating a propositional formula that is satisfiable iff such a counterexample exists. The BMC method is feasible for the various classes of temporal logic; in particular it is feasible for TECTL (the existential fragment of Time Computation Tree Logic) and Diagonal-free Timed Automata. The main contribution of the paper is to show that the concept of Bounded Model Checking can be extended to deal with TECTL_{-G} properties of Diagonal Timed Automata. We have implemented our new BMC algorithm, and we present preliminary experimental results, which demonstrate the efficiency of the method.

[1]  Andrzej Zbrzezny SAT-based Reachability Checking for Timed Automata with Diagonal Constraints , 2005, Fundam. Informaticae.

[2]  Wojciech Penczek,et al.  Bounded model checking for knowledge and real time , 2005, AAMAS '05.

[3]  A. Prasad Sistla,et al.  Symmetry and model checking , 1993, Formal Methods Syst. Des..

[4]  Wojciech Penczek,et al.  Automated Verification of Infinite State Concurrent Systems , 2001, PPAM.

[5]  Stavros Tripakis,et al.  Model Checking of Real-Time Reachability Properties Using Abstractions , 1998, TACAS.

[6]  Wang Yi,et al.  Timed Automata with Asynchronous Processes: Schedulability and Decidability , 2002, TACAS.

[7]  Kenneth L. McMillan,et al.  Applying SAT Methods in Unbounded Symbolic Model Checking , 2002, CAV.

[8]  Johan Lilius,et al.  Efficient State Space Search for Time Petri Nets , 1998, MFCS Workshop on Concurrency.

[9]  Wojciech Penczek,et al.  Bounded Model Checking for the Universal Fragment of CTL , 2002, Fundam. Informaticae.

[10]  Thomas A. Henzinger,et al.  A Space-Efficient On-the-fly Algorithm for Real-Time Model Checking , 1996, CONCUR.

[11]  Harald Ruess,et al.  Lazy Theorem Proving for Bounded Model Checking over Infinite Domains , 2002, CADE.

[12]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[13]  Pierre Wolper,et al.  Partial-Order Methods for Temporal Verification , 1993, CONCUR.

[14]  Thomas A. Henzinger,et al.  Logics and Models of Real Time: A Survey , 1991, REX Workshop.

[15]  Wojciech Penczek,et al.  Specification and Model Checking of Temporal Properties in Time Petri Nets and Timed Automata , 2004, ICATPN.

[16]  Doron A. Peled Partial order reduction: Linear and branching temporal logics and process algebras , 1996, Partial Order Methods in Verification.

[17]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[18]  Stavros Tripakis,et al.  On-the-fly symbolic model checking for real-time systems , 1997, Proceedings Real-Time Systems Symposium.

[19]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[20]  Wojciech Penczek,et al.  Towards Bounded Model Checking for the Universal Fragment of TCTL , 2002, FTRTFT.

[21]  Stavros Tripakis,et al.  Analysis of Timed Systems Using Time-Abstracting Bisimulations , 2001, Formal Methods Syst. Des..

[22]  Wojciech Penczek,et al.  Checking Reachability Properties for Timed Automata via SAT , 2002, Fundam. Informaticae.

[23]  E. Clarke,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[24]  Sanjit A. Seshia,et al.  Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods , 2003, CAV.

[25]  W. Penczek,et al.  Bounded Model Checking for Reachability Testing in Time Petri Nets ? , 2022 .

[26]  Maria Sorea Bounded Model Checking for Timed Automata , 2002, Electron. Notes Theor. Comput. Sci..

[27]  Orna Grumberg,et al.  Abstract interpretation of reactive systems , 1997, TOPL.

[28]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[29]  Wang Yi,et al.  Partial Order Reductions for Timed Systems , 1998, CONCUR.

[30]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[31]  Florence Pagani,et al.  Partial Orders and Verification of Real-Time systems , 1996, FTRTFT.

[32]  Wojciech Penczek,et al.  Bounded Model Checking for knowledge over real time , 2004 .

[33]  Andrzej Zbrzezny,et al.  Checking ACTL* Properties of Discrete Timed Automata via Bounded Model Checking , 2003, FORMATS.

[34]  Ruurd Kuiper,et al.  Partial-order Reduction Techniques for Real-time Model Checking , 1998, Formal Aspects of Computing.

[35]  Stephan Merz,et al.  Model Checking , 2000 .

[36]  P. Merlin,et al.  Recoverability of Communication Protocols - Implications of a Theoretical Study , 1976, IEEE Transactions on Communications.

[37]  Orna Grumberg,et al.  Abstract Interpretation of Reactive Systems: Abstractions Preserving 'I1CTL *. 3CTL * and CTL * , 1994 .

[38]  Wojciech Penczek,et al.  Bounded model checking for knowledge and real time , 2007, Artif. Intell..

[39]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, JACM.

[40]  Andrzej Zbrzezny Improvements in SAT-based Reachability Analysis for Timed Automata , 2004, Fundam. Informaticae.