Splines and geometric modeling

Piecewise polynomials of some xed degree and continuously di erentiable upto some order are known as splines or nite elements. Splines are used in applications ranging from image processing, computer aided design, to the solution of partial di erential equations via nite element analysis. The spline tting problem of constructing a mesh of nite elements that interpolate or approximate multivariate data is by far the primary research problem in geometric modeling. Parametric splines are vectors of multivariate polynomial (or rational) functions while implicit splines are zero contours of multivariate polynomials. This survey shall dwell mainly on spline surface tting methods in IR Tensor product splines in (Section xx.1,...), triangular basis splines (Section xx.7,...). The following criteria may be used in evaluating these spline methods:

[1]  Nicholas M. Patrikalakis,et al.  Representation of piecewise continuous algebraic surfaces in terms of B-splines , 2005, The Visual Computer.

[2]  Jörg Peters Smooth mesh interpolation with cubic patches , 1990, Comput. Aided Des..

[3]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[4]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[5]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[6]  D. Forsey,et al.  Multi-Resolution Surface Approximation for Animation , 1992 .

[7]  Jindong Chen,et al.  Modeling with cubic A-patches , 1995, TOGS.

[8]  Joe Warren,et al.  Approximation of dense scattered data using algebraic surfaces , 1991, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences.

[9]  Thomas W. Sederberg Piecewise algebraic surface patches , 1985, Comput. Aided Geom. Des..

[10]  Bernd Hamann,et al.  Visualizing and modeling scattered multivariate data , 1991, IEEE Computer Graphics and Applications.

[11]  Menno Kosters High-order implicit blending surfaces of low degree , 1991, Comput. Aided Geom. Des..

[12]  G. Farin,et al.  Ann-dimensional Clough-Tocher interpolant , 1987 .

[13]  Hans-Peter Seidel,et al.  Control Points for Multivariate B‐Spline Surfaces over Arbitrary Triangulations , 1991, Comput. Graph. Forum.

[14]  Elaine Cohen,et al.  Physical modeling with B-spline surfaces for interactive design and animation , 1990, I3D '90.

[15]  John E. Hopcroft,et al.  The Geometry of Projective Blending Surfaces , 1988, Artif. Intell..

[16]  Jörg Peters,et al.  Smooth free-form surfaces over irregular meshes generalizing quadratic splines , 1993, Comput. Aided Geom. Des..

[17]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[18]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[19]  George Celniker,et al.  Deformable curve and surface finite-elements for free-form shape design , 1991, SIGGRAPH.

[20]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[21]  Carlo H. Séquin,et al.  Local surface interpolation with Bézier patches , 1987, Comput. Aided Geom. Des..

[22]  Jarke J. van Wijk,et al.  Bicubic patches for approximating non-rectangular control-point meshes , 1986, Comput. Aided Geom. Des..

[23]  T. Grandine The stable evaluation of multivariate simplex splines , 1988 .

[24]  J. Hopcroft,et al.  Quadratic blending surfaces , 1985 .

[25]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[26]  Insung Ihm,et al.  Algebraic surface design with Hermite interpolation , 1992, TOGS.

[27]  C. Bajaj Surface fitting using implicit algebraic surface patches , 1992 .

[28]  Insung Ihm,et al.  Higher-order interpolation and least-squares approximation using implicit algebraic surfaces , 1993, TOGS.

[29]  Richard F. Riesenfeld,et al.  Discrete box splines and refinement algorithms , 1984, Comput. Aided Geom. Des..

[30]  R. Barnhill SMOOTH INTERPOLATION OVER TRIANGLES , 1974 .

[31]  Marian Neamtu,et al.  Approximation and geometric modeling with simplex B-splines associated with irregular triangles , 1991, Comput. Aided Geom. Des..

[32]  Wolfgang Böhm Calculating with box splines , 1984, Comput. Aided Geom. Des..

[33]  Tony DeRose,et al.  Generalized B-spline surfaces of arbitrary topology , 1990, SIGGRAPH.

[34]  C. Micchelli,et al.  Recent Progress in multivariate splines , 1983 .

[35]  Joe D. Warren,et al.  Blending algebraic surfaces , 1989, TOGS.

[36]  Hong Qin,et al.  Dynamic NURBS with geometric constraints for interactive sculpting , 1994, TOGS.

[37]  Ahmad H. Nasri,et al.  Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..

[38]  Demetri Terzopoulos,et al.  Dynamic swung surfaces for physics-based shape design , 1995, Comput. Aided Des..

[39]  Helmut Pottmann,et al.  Fat surfaces: a trivariate approach to triangle-based interpolation on surfaces , 1992, Comput. Aided Geom. Des..

[40]  K. L. Rescorla C1 trivariate polynomial interpolation , 1987, Comput. Aided Geom. Des..

[41]  C. Micchelli,et al.  Blossoming begets B -spline bases built better by B -patches , 1992 .

[42]  C. Micchelli,et al.  On the Linear Independence of Multivariate B-Splines, I. Triangulations of Simploids , 1982 .

[43]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[44]  Wolfgang Dahmen,et al.  Cubicoids: modeling and visualization , 1993, Comput. Aided Geom. Des..

[45]  Peter Alfeld,et al.  A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..

[46]  M. A. Sabin Non-Rectangular Surface Patches Suitable for Inclusion in a B-Spline Surface , 1983, Eurographics.

[47]  John C. Platt,et al.  Constraints methods for flexible models , 1988, SIGGRAPH.

[48]  Fumihiko Kimura,et al.  Non-four-sided patch expressions with control points , 1984, Comput. Aided Geom. Des..

[49]  Wolfgang Dahmen,et al.  Subdivision algorithms for the generation of box spline surfaces , 1984, Comput. Aided Geom. Des..

[50]  Hans-Peter Seidel,et al.  A new multiaffine approach to B-splines , 1989, Comput. Aided Geom. Des..

[51]  W. J. Gordon Blending-Function Methods of Bivariate and Multivariate Interpolation and Approximation , 1971 .

[52]  J. Hopcroft,et al.  The Potential Method for Blending Surfaces and Corners , 1985 .

[53]  Chandrajit L. Bajaj,et al.  MODELING SCATTERED FUNCTION DATA ON CURVED SURFACES , 1994 .

[54]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[55]  Chandrajit L. Bajaj,et al.  Reconstruction of Surfaces and Surfaces- on- Surfaces from Unorganized Weighted Points , 1994 .

[56]  J. Peters Smooth interpolation of a mesh of curves , 1991 .

[57]  C. Micchelli,et al.  On multivariate -splines , 1989 .

[58]  Andrew P. Witkin,et al.  Energy constraints on parameterized models , 1987, SIGGRAPH.

[59]  P. Alfeld Scattered data interpolation in three or more variables , 1989 .

[60]  Joe D. Warren Creating multisided rational Bézier surfaces using base points , 1992, TOGS.

[61]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[62]  B. Guo,et al.  Surface generation using implicit cubics , 1991 .

[63]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[64]  B. Guo,et al.  Nonsplitting Macro Patches for Implicit Cubic Spline Surfaces , 1993, Comput. Graph. Forum.

[65]  Menno Kosters An extension of the potential method to higher-order blendings , 1991, SMA '91.

[66]  Thomas W. Sederberg Surfaces-techniques for cubic algebraic surfaces , 1990, IEEE Computer Graphics and Applications.

[67]  Lasse Holmström Piecewise quadric blending of implicitly defined surfaces , 1987, Comput. Aided Geom. Des..

[68]  Hiroaki Chiyokura,et al.  Design of solids with free-form surfaces , 1983, SIGGRAPH.

[69]  A. A. Ball,et al.  Design of an n-sided surface patch from Hermite boundary data , 1989, Comput. Aided Geom. Des..

[70]  Thomas W. Sederberg,et al.  Techniques for cubic algebraic surfaces , 1990, IEEE Computer Graphics and Applications.

[71]  John A. Gregory,et al.  A pentagonal surface patch for computer aided geometric design , 1984, Comput. Aided Geom. Des..

[72]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[73]  C. Bajaj The Emergence of Algebraic Curves and Surfaces in Geometric Design , 1992 .

[74]  Ulrich Reif,et al.  Biquadratic G-spline surfaces , 1995, Comput. Aided Geom. Des..

[75]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[76]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[77]  Tamás Várady,et al.  Overlap patches: a new scheme for interpolating curve networks with n-sided regions , 1991, Comput. Aided Geom. Des..

[78]  Philip W. L. Fong,et al.  An implementation of multivariate B-spline surfaces over arbitrary triangulations , 1992 .

[79]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[80]  Chandrajit L. Bajaj,et al.  Geometric Modeling with Algebraic Surfaces , 1988, IMA Conference on the Mathematics of Surfaces.

[81]  H. Seidel Symmetric recursive algorithms for surfaces: B-patches and the de boor algorithm for polynomials over triangles , 1991 .