Dynamic causal modelling revisited

This paper revisits the dynamic causal modelling of fMRI timeseries by replacing the usual (Taylor) approximation to neuronal dynamics with a neural mass model of the canonical microcircuit. This provides a generative or dynamic causal model of laminar specific responses that can generate haemodynamic and electrophysiological measurements. In principle, this allows the fusion of haemodynamic and (event related or induced) electrophysiological responses. Furthermore, it enables Bayesian model comparison of competing hypotheses about physiologically plausible synaptic effects; for example, does attentional modulation act on superficial or deep pyramidal cells – or both? In this technical note, we describe the resulting dynamic causal model and provide an illustrative application to the attention to visual motion dataset used in previous papers. Our focus here is on how to answer long-standing questions in fMRI; for example, do haemodynamic responses reflect extrinsic (afferent) input from distant cortical regions, or do they reflect intrinsic (recurrent) neuronal activity? To what extent do inhibitory interneurons contribute to neurovascular coupling? What is the relationship between haemodynamic responses and the frequency of induced neuronal activity? This paper does not pretend to answer these questions; rather it shows how they can be addressed using neural mass models of fMRI timeseries.

[1]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[2]  Karl J. Friston,et al.  Attentional Modulation of Alpha/Beta and Gamma Oscillations Reflect Functionally Distinct Processes , 2014, The Journal of Neuroscience.

[3]  Antoine Lutti,et al.  Discrimination of cortical laminae using MEG , 2014, NeuroImage.

[4]  Jack Waters,et al.  Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors. , 2015, Journal of neurophysiology.

[5]  Karl J. Friston,et al.  Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention , 2015, The Journal of Neuroscience.

[6]  Andreas Draguhn,et al.  Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  Karl J. Friston,et al.  Attentional Enhancement of Auditory Mismatch Responses: a DCM/MEG Study , 2015, Cerebral cortex.

[8]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[9]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[10]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.

[11]  Eduardo A. Aponte,et al.  mpdcm: A toolbox for massively parallel dynamic causal modeling , 2016, Journal of Neuroscience Methods.

[12]  Karl J. Friston,et al.  Neural masses and fields in dynamic causal modeling , 2013, Front. Comput. Neurosci..

[13]  Karl J. Friston,et al.  Granger causality revisited , 2014, NeuroImage.

[14]  Karl J. Friston,et al.  An In Vivo Assay of Synaptic Function Mediating Human Cognition , 2011, Current Biology.

[15]  Taihei Ninomiya,et al.  Segregated Pathways Carrying Frontally Derived Top-Down Signals to Visual Areas MT and V4 in Macaques , 2012, The Journal of Neuroscience.

[16]  Giorgio Carmignoto,et al.  The contribution of astrocyte signalling to neurovascular coupling , 2010, Brain Research Reviews.

[17]  L. Lemieux,et al.  Electrophysiological correlates of the BOLD signal for EEG‐informed fMRI , 2014, Human brain mapping.

[18]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[19]  D. Attwell,et al.  The neural basis of functional brain imaging signals , 2002, Trends in Neurosciences.

[20]  Adeel Razi,et al.  Construct validation of a DCM for resting state fMRI , 2015, NeuroImage.

[21]  Nikolaus Kriegeskorte,et al.  Analysing linear multivariate pattern transformations in neuroimaging data , 2018, bioRxiv.

[22]  Devin K. Binder,et al.  Astrocyte Calcium Signaling , 2016 .

[23]  Karl J. Friston,et al.  A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey , 2015, NeuroImage.

[24]  Michael Breakspear,et al.  The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex , 2016, NeuroImage.

[25]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[26]  Alfonso Araque,et al.  Astrocyte: Calcium Signaling , 2009 .

[27]  R. Oostenveld,et al.  Tactile Spatial Attention Enhances Gamma-Band Activity in Somatosensory Cortex and Reduces Low-Frequency Activity in Parieto-Occipital Areas , 2006, The Journal of Neuroscience.

[28]  Andreas Kleinschmidt,et al.  EEG-correlated fMRI of human alpha activity , 2003, NeuroImage.

[29]  Richard N. Henson,et al.  Recent advances in functional neuroimaging analysis for cognitive neuroscience , 2018, Brain and neuroscience advances.

[30]  Miles A. Whittington,et al.  Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model , 2013, PLoS Comput. Biol..

[31]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[32]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[33]  Karl J. Friston,et al.  Comparing hemodynamic models with DCM , 2007, NeuroImage.

[34]  Karl J. Friston,et al.  Hemodynamic correlates of EEG: A heuristic , 2005, NeuroImage.

[35]  S. Kastner,et al.  From Behavior to Neural Dynamics: An Integrated Theory of Attention , 2015, Neuron.

[36]  B. Roth,et al.  Serotonin-2C and -2a receptor co-expression on cells in the rat medial prefrontal cortex , 2015, Neuroscience.

[37]  D. Attwell,et al.  Astrocyte calcium signaling: the third wave , 2016, Nature Neuroscience.

[38]  T. Robbins,et al.  Central cholinergic systems and cognition. , 1997, Annual review of psychology.

[39]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[40]  Karl J. Friston,et al.  Empirical Bayes for DCM: A Group Inversion Scheme , 2015, Front. Syst. Neurosci..

[41]  N Kopell,et al.  Neuronal assembly dynamics in the beta1 frequency range permits short-term memory , 2011, Proceedings of the National Academy of Sciences.

[42]  William D. Penny,et al.  Comparing Dynamic Causal Models using AIC, BIC and Free Energy , 2012, NeuroImage.

[43]  Karl J. Friston Regulation of rCBF by diffusible signals: An analysis of constraints on diffusion and elimination , 1995 .

[44]  Mitsuhiro Fukuda,et al.  Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb , 2015, The Journal of Neuroscience.

[45]  Jakob Heinzle,et al.  A Microcircuit Model of the Frontal Eye Fields , 2007, The Journal of Neuroscience.

[46]  Henry Kennedy,et al.  Cortical High-Density Counterstream Architectures , 2013, Science.

[47]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[48]  Karl J. Friston,et al.  Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State , 2011, Science.

[49]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.

[50]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[51]  Karl J. Friston,et al.  Dynamic causal modelling of precision and synaptic gain in visual perception — an EEG study , 2012, NeuroImage.

[52]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[53]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[54]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[55]  P. Stroman,et al.  The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals , 2011, The European journal of neuroscience.

[56]  Adeel Razi,et al.  Bayesian model reduction and empirical Bayes for group (DCM) studies , 2016, NeuroImage.

[57]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[58]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[59]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[60]  Karl J. Friston,et al.  Dynamic causal modelling for fMRI: A two-state model , 2008, NeuroImage.

[61]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[62]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[63]  Adeel Razi,et al.  A DCM for resting state fMRI , 2014, NeuroImage.

[64]  Gustavo Deco,et al.  Rich club organization supports a diverse set of functional network configurations , 2014, NeuroImage.

[65]  O. Sporns,et al.  Towards the virtual brain: network modeling of the intact and the damaged brain. , 2010, Archives italiennes de biologie.

[66]  Karl J. Friston,et al.  Physiologically informed dynamic causal modeling of fMRI data , 2015, NeuroImage.

[67]  M P Young,et al.  Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  Helmut Laufs,et al.  Endogenous brain oscillations and related networks detected by surface EEG‐combined fMRI , 2008, Human brain mapping.

[69]  Karl J. Friston,et al.  DCM for complex-valued data: Cross-spectra, coherence and phase-delays , 2012, NeuroImage.

[70]  G. Pfurtscheller,et al.  Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[71]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[72]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[73]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[74]  Adrian L. Williams,et al.  Task-Related Changes in Cortical Synchronization Are Spatially Coincident with the Hemodynamic Response , 2002, NeuroImage.

[75]  Karl J. Friston,et al.  Network discovery with large DCMs , 2013, NeuroImage.

[76]  Adeel Razi,et al.  The Connected Brain: Causality, models, and intrinsic dynamics , 2016, IEEE Signal Processing Magazine.

[77]  Karl J. Friston,et al.  Cholinergic Stimulation Enhances Bayesian Belief Updating in the Deployment of Spatial Attention , 2014, The Journal of Neuroscience.

[78]  Wolfgang Maass,et al.  Cerebral Cortex Advance Access published February 15, 2006 A Statistical Analysis of Information- Processing Properties of Lamina-Specific , 2022 .

[79]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[80]  René Scheeringa,et al.  The relationship between oscillatory EEG activity and the laminar-specific BOLD signal , 2016, Proceedings of the National Academy of Sciences.

[81]  Timothy H Murphy,et al.  Optogenetic Stimulation of GABA Neurons can Decrease Local Neuronal Activity While Increasing Cortical Blood Flow , 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[82]  Karl J. Friston,et al.  Generalised filtering and stochastic DCM for fMRI , 2011, NeuroImage.

[83]  O. Arthurs,et al.  How well do we understand the neural origins of the fMRI BOLD signal? , 2002, Trends in Neurosciences.

[84]  Richard N Henson,et al.  A multi-subject, multi-modal human neuroimaging dataset , 2015, Scientific Data.