Passive and active fiber reorientation in anisotropic materials

[1]  Chun I. L. Kim,et al.  Mechanics of hyperelastic composites reinforced with nonlinear elastic fibrous materials in finite plane elastostatics , 2021 .

[2]  D. Riccobelli Active elasticity drives the formation of periodic beading in damaged axons. , 2021, Physical review. E.

[3]  C. Giverso,et al.  Cell orientation under stretch: Stability of a linear viscoelastic model. , 2021, Mathematical biosciences.

[4]  L. Preziosi,et al.  A nonlinear elastic description of cell preferential orientations over a stretched substrate , 2021, Biomechanics and Modeling in Mechanobiology.

[5]  Kim Dan Nguyen,et al.  Mechanoadaptive organization of stress fiber subtypes in epithelial cells under cyclic stretches and stretch release , 2020, Scientific Reports.

[6]  P. Nardinocchi,et al.  Magneto-induced remodelling of fibre-reinforced elastomers , 2019 .

[7]  Alfio Grillo,et al.  Anelastic reorganisation of fibre-reinforced biological tissues , 2019, Comput. Vis. Sci..

[8]  Antonio DeSimone,et al.  Growth and remodelling of living tissues: perspectives, challenges and opportunities , 2019, Journal of the Royal Society Interface.

[9]  A. Grillo,et al.  Coupling among deformation, fluid flow, structural reorganisation and fibre reorientation in fibre-reinforced, transversely isotropic biological tissues , 2019, International Journal of Non-Linear Mechanics.

[10]  G. Holzapfel,et al.  Anisotropic finite strain viscoelasticity: Constitutive modeling and finite element implementation , 2019, Journal of the Mechanics and Physics of Solids.

[11]  P. Nardinocchi,et al.  Torque-induced reorientation in active fibre-reinforced materials. , 2018, Soft matter.

[12]  G. Dreissen,et al.  Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application , 2018, Cytoskeleton.

[13]  A. Grillo,et al.  An Allen–Cahn approach to the remodelling of fibre-reinforced anisotropic materials , 2018 .

[14]  F. Baaijens,et al.  Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments , 2015, Cellular and Molecular Bioengineering.

[15]  Alfio Quarteroni,et al.  An orthotropic active{strain model for the myocardium mechanics and its numerical approximation , 2014 .

[16]  Benjamin Geiger,et al.  Cell reorientation under cyclic stretching , 2014, Nature Communications.

[17]  Alain Goriely,et al.  Dynamic fiber reorientation in a fiber-reinforced hyperelastic material , 2013 .

[18]  Huajian Gao,et al.  Cyclic Stretch Induces Cell Reorientation on Substrates by Destabilizing Catch Bonds in Focal Adhesions , 2012, PloS one.

[19]  D. Kelly,et al.  Remodelling of collagen fibre transition stretch and angular distribution in soft biological tissues and cell-seeded hydrogels , 2012, Biomechanics and modeling in mechanobiology.

[20]  Du Q. Huynh,et al.  Metrics for 3D Rotations: Comparison and Analysis , 2009, Journal of Mathematical Imaging and Vision.

[21]  Gerhard A Holzapfel,et al.  Constitutive modelling of passive myocardium: a structurally based framework for material characterization , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  R. Kaunas,et al.  A Dynamic Stochastic Model of Frequency-Dependent Stress Fiber Alignment Induced by Cyclic Stretch , 2009, PloS one.

[23]  Huajian Gao,et al.  Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. , 2008, Biophysical journal.

[24]  Jay D Humphrey,et al.  Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents , 2008, Biomechanics and modeling in mechanobiology.

[25]  T. Pollard,et al.  The structural basis of actin filament branching by the Arp2/3 complex , 2008, The Journal of cell biology.

[26]  Paul Steinmann,et al.  Time‐dependent fibre reorientation of transversely isotropic continua—Finite element formulation and consistent linearization , 2008 .

[27]  A. Menzel,et al.  A fibre reorientation model for orthotropic multiplicative growth , 2007, Biomechanics and modeling in mechanobiology.

[28]  Salah Naili,et al.  Sur le remodelage des tissus osseux anisotropes , 2006 .

[29]  Matthew D. Welch,et al.  The ARP2/3 complex: an actin nucleator comes of age , 2006, Nature Reviews Molecular Cell Biology.

[30]  H. Narayanan,et al.  Biological remodelling: Stationary energy, configurational change, internal variables and dissipation , 2005, q-bio/0506023.

[31]  Andreas Menzel,et al.  Modelling of anisotropic growth in biological tissues , 2005 .

[32]  A. Mogilner,et al.  Model of coupled transient changes of Rac, Rho, adhesions and stress fibers alignment in endothelial cells responding to shear stress. , 2005, Journal of theoretical biology.

[33]  K. Grosh,et al.  Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network , 2004, q-bio/0411037.

[34]  Stephen C Cowin,et al.  Tissue growth and remodeling. , 2004, Annual review of biomedical engineering.

[35]  J. Humphrey,et al.  Biological Growth and Remodeling: A Uniaxial Example with Possible Application to Tendons and Ligaments , 2003 .

[36]  I. LeGrice,et al.  Shear properties of passive ventricular myocardium. , 2002, American journal of physiology. Heart and circulatory physiology.

[37]  Antonio DiCarlo,et al.  Growth and balance , 2002 .

[38]  R. Brand,et al.  Fibroblast orientation to stretch begins within three hours , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[39]  J. Merodio,et al.  Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation , 2002 .

[40]  F. Yin,et al.  Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. , 2001, Journal of biomechanics.

[41]  K. Hayakawa,et al.  Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. , 2001, Experimental cell research.

[42]  Mikhail Itskov,et al.  A generalized orthotropic hyperelastic material model with application to incompressible shells , 2001 .

[43]  R. Brand,et al.  Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[44]  Mikhail Itskov,et al.  Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements , 2000 .

[45]  M. Vianello Optimization of the stored energy and coaxiality of strain and stress in finite elasticity , 1996 .

[46]  L A Taber,et al.  Theoretical study of stress-modulated growth in the aorta. , 1996, Journal of theoretical biology.

[47]  H S Borovetz,et al.  Identification of elastic properties of homogeneous, orthotropic vascular segments in distension. , 1995, Journal of biomechanics.

[48]  Q.-S. Zheng,et al.  On transversely isotropic, orthotropic and relative isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Part I: Two dimensional orthotropic and relative isotropic functions and three dimensional relative isotropic functions , 1993 .

[49]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[50]  Laurent Blanchoin,et al.  Actin dynamics, architecture, and mechanics in cell motility. , 2014, Physiological reviews.

[51]  J. M. Zhang,et al.  Structural tensors for anisotropic solids , 1990 .

[52]  A.J.M. Spencer,et al.  Constitutive Theory for Strongly Anisotropic Solids , 1984 .

[53]  Liu I-Shih On representations of anisotropic invariants , 1982 .