Elasticity, crystal structure and phase transitions

Abstract It is demonstrated that in many cases the ratio of elastic velocities of polymorphs of a material depends primarily on the crystal structures involved, and only secondarily on the composition. Crucial to this demonstration is the use of estimates, from the Hashin-Shtrikman bounds, of the elastic properties of mixtures of simple oxides isochemical to particular compounds. Normalization to the oxide mixture properties displays the interrelationships between the densities and velocities of different crystal structures. A wide range of velocity-density trends through possible phase transitions is found. Transitions involving increases of Si coordination from 4 to 6 tend to have lower slopes. Velocity-density correlations are reasonably consistent with the average trends through phase transitions. Comparison of models of the transition zone with the characteristics of the olivine-spinel-oxides transitions indicates that in some studies the lower mantle density may have been underestimated or the mean atomic weight of the lower mantle overestimated. The transition zone of Model B1 of Jordan and Anderson, which was derived entirely from seismic data, is consistent, overall, with the olivine-oxides transition and uniform composition, but the individual discontinuities are not consistent with the olivine-spinel and spinel-oxides transitions.

[1]  D. Chung,et al.  Effects of iron/magnesium ratio on P- and S-wave velocities in olivine , 1970 .

[2]  R. Hearmon,et al.  The Elastic Constants of Anisotropic Materials , 1946 .

[3]  Don L. Anderson,et al.  Phase Changes in the Upper Mantle , 1967, Science.

[4]  A. E. Ringwood,et al.  Phase transformations and the constitution of the mantle , 1970 .

[5]  Don L. Anderson,et al.  Bulk modulus‐density systematics , 1969 .

[6]  Gene Simmons,et al.  Elasticity of some mantle crystal structures: 2. Rutile GeO2 , 1973 .

[7]  Hitoshi Mizutani,et al.  Compressional-wave velocities of fayalite, Fe2SiO4 spinel, and coesite , 1970 .

[8]  R.F.S. Hearmon,et al.  The elastic constants of anisotropic materials—II , 1956 .

[9]  R. Liebermann,et al.  Compressional velocities of polycrystalline olivine, spinel and rutile minerals , 1972 .

[10]  Donald V. Helmberger,et al.  Upper mantle structure of the western United States , 1971 .

[11]  Naohiro Soga,et al.  Sound velocity of some germanate compounds and its relation to the law of corresponding states , 1971 .

[12]  Don L. Anderson,et al.  The composition of the lower mantle , 1970 .

[13]  T. Jordan,et al.  Earth structure from free oscillations and travel times: Geophys , 1974 .

[14]  R. Liebermann,et al.  Elasticity of the olivine‐spinel and olivine‐β phase transformations and the 400‐kilometer discontinuity of the mantle , 1973 .

[15]  F. Birch,et al.  Density and composition of mantle and core , 1964 .

[16]  R. Liebermann Elastic Properties of Germanate Analogues of Olivine, Spinel and β Polymorphs of (Mg,Fe) 2 SiO 4 , 1973 .

[17]  D. L. Anderson A Seismic Equation of State , 1967 .

[18]  Hitoshi Mizutani,et al.  Elastic‐wave velocities of polycrystalline stishovite , 1972 .

[19]  Louis R. Rossi,et al.  Elastic Properties of Oxide Solid Solutions: The System Al2O3−Cr2O3 , 1970 .

[20]  W. C. Hahn,et al.  Elastic moduli of pressure-sintered nickel oxide , 1971 .

[21]  Gene Simmons,et al.  Velocity of compressional waves in various minerals at pressures to 10 kilobars , 1964 .

[22]  D. Chung,et al.  General relationships among sound speeds: I. New experimental information , 1974 .

[23]  Naohiro Soga,et al.  A restriction to the law of corresponding states , 1967 .

[24]  Naohiro Soga,et al.  Some elastic constant data on minerals relevant to geophysics , 1968 .

[25]  F. Birch,et al.  Composition of the Earth's Mantle , 1937 .

[26]  Dae H. Chung,et al.  Birch's Law: Why Is It So Good? , 1972, Science.

[27]  R. Liebermann,et al.  Elasticity of Pyroxene‐Garnet and Pyroxene‐Ilmenite Phase Transformations in Germanates , 1974 .

[28]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[29]  F. Birch The velocity of compressional waves in rocks to 10 kilobars: 1. , 1960 .

[30]  R. Liebermann Pressure and temperature dependence of the elastic properties of polycrystalline trevorite (NiFe2O4) , 1972 .

[31]  A. L. Frisillo,et al.  Measurement of single‐crystal elastic constants of bronzite as a function of pressure and temperature , 1972 .

[32]  G. Rupprecht,et al.  THE ELASTIC CONSTANTS OF STRONTIUM TITANATE , 1963 .

[33]  Gene Simmons,et al.  Elasticity of some mantle crystal structures: 1. Pleonaste and hercynite spinel , 1972 .

[34]  T. Shankland,et al.  Velocity‐density systematics: Derivation from Debye theory and the effect of ionic size , 1972 .

[35]  Lane R. Johnson,et al.  Array measurements of P velocities in the upper mantle , 1967 .

[36]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[37]  E. A. Flinn,et al.  Fine structure of the upper mantle , 1969 .

[38]  A. E. Ringwood,et al.  Birch's law and polymorphic phase transformations , 1973 .

[39]  D. Anderson,et al.  Composition and evolution of the mantle and core. , 1971, Science.

[40]  Z. Chang,et al.  Pressure dependence of single‐crystal elastic constants and anharmonic properties of spinel , 1973 .

[41]  Chi‐yuen Wang,et al.  Equation of state of periclase and some of its geophysical implications , 1969 .

[42]  F. Gilbert,et al.  Observations of Normal Modes from 84 Recordings of the Alaskan Earthquake of 1964 March 28 , 1972 .

[43]  W. Bassett,et al.  Disproportionation of Fe2SiO4 to 2FeO+SiO2 at pressures up to 250kbar and temperatures up to 3000 °C , 1972 .

[44]  D. Chung,et al.  General relationships among sound speeds: II. Theory and discussion , 1974 .