Uniform Error Analysis for Lagrange-Galerkin Approximations of Convection-Dominated Problems

In this paper we present a rigorous error analysis for the Lagrange--Galerkin method applied to convection-dominated diffusion problems. We prove new error estimates in which the constants depend on norms of the data and not of the solution and do not tend to infinity in the hyperbolic limit. This is in contrast to other results in this field. For the time discretization, uniform convergence with respect to the diffusion parameter of order O(k//tn) is shown for initial values in L2 and O(k) for initial values in H2. For the spatial discretization with linear finite elements, we verify uniform convergence of order O(h2+min{h,h2/k) for data in H2. By interpolation of Banach spaces, suboptimal convergence rates are derived under less restrictive assumptions. The analysis is heavily based on a priori estimates, uniform in the diffusion parameter, for the solution of the continuous and the semidiscrete problem. They are derived in a Lagrangian framework by transforming the Eulerian coordinates completely into subcharacteristic coordinates. Finally, we illustrate the error estimates by some numerical results.

[1]  Tosio Kato Perturbation theory for linear operators , 1966 .

[2]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[3]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[4]  J. M. Coulson,et al.  Heat Transfer , 2018, Finite Element Method for Solids and Structures.

[5]  田辺 広城,et al.  Equations of evolution , 1979 .

[6]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[7]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[8]  Elias M. Stein,et al.  Interpolation of linear operators , 1956 .

[9]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[10]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[11]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[12]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[13]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[14]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[15]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[16]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[17]  Chieh-Sen Huang,et al.  The modified method of characteristics with adjusted advection , 1999, Numerische Mathematik.

[18]  Endre Süli,et al.  Evolution-Galerkin methods and their supraconvergence , 1995 .

[19]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[20]  Markus Bause Scales of ε-uniform a priori estimates for nonstationary convection-dominated diffusion problems , 2000, ANNALI DELL UNIVERSITA DI FERRARA.

[21]  V. Lakshmikantham,et al.  Differential equations in abstract spaces , 1972 .

[22]  Endre Süli,et al.  Stability of the Lagrange-Galerkin method with non-exact integration , 1988 .

[23]  T. F. Russell,et al.  Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis , 1994 .

[24]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[25]  Peter Knabner,et al.  The modeling of reactive solute transport with sorption to mobile and immobile sorbents: 1. Experime , 1996 .

[26]  PETER KNABNERyAbstract,et al.  UNIFORM ERROR ANALYSIS FOR LAGRANGE{GALERKIN APPROXIMATIONS OF CONVECTION-DOMINATED DIFFUSION PROBLEMS. PART I: A PRIORI ANALYSIS IN LAGRANGIAN COORDINATES AND OPTIMAL-ORDER ERROR ESTIMATES FOR THE TIME DISCRETIZATION , 1999 .

[27]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .