Relational Pooling for Graph Representations

This work generalizes graph neural networks (GNNs) beyond those based on the Weisfeiler-Lehman (WL) algorithm, graph Laplacians, and diffusions. Our approach, denoted Relational Pooling (RP), draws from the theory of finite partial exchangeability to provide a framework with maximal representation power for graphs. RP can work with existing graph representation models and, somewhat counterintuitively, can make them even more powerful than the original WL isomorphism test. Additionally, RP allows architectures like Recurrent Neural Networks and Convolutional Neural Networks to be used in a theoretically sound approach for graph classification. We demonstrate improved performance of RP-based graph representations over state-of-the-art methods on a number of tasks.

[1]  Guy Van den Broeck,et al.  Tractability through Exchangeability: A New Perspective on Efficient Probabilistic Inference , 2014, AAAI.

[2]  Ken-ichi Kawarabayashi,et al.  Representation Learning on Graphs with Jumping Knowledge Networks , 2018, ICML.

[3]  Gayla S. Domke,et al.  4-Circulant Graphs , 2002, Ars Comb..

[4]  Ryan A. Rossi,et al.  Graph Classification using Structural Attention , 2018, KDD.

[5]  Alexander J. Smola,et al.  Deep Sets , 2017, 1703.06114.

[6]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[7]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[8]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[9]  Joseph Gomes,et al.  MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a , 2017, Chemical science.

[10]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[11]  Vijay S. Pande,et al.  MoleculeNet: a benchmark for molecular machine learning , 2017, Chemical science.

[12]  G. Sethuraman,et al.  Graph Theory and Its Applications , 2004 .

[13]  Yaron Lipman,et al.  On the Universality of Invariant Networks , 2019, ICML.

[14]  Léon Bottou,et al.  Stochastic Gradient Descent Tricks , 2012, Neural Networks: Tricks of the Trade.

[15]  Martin Fürer,et al.  On the Combinatorial Power of the Weisfeiler-Lehman Algorithm , 2017, CIAC.

[16]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[17]  Mathias Niepert,et al.  Learning Convolutional Neural Networks for Graphs , 2016, ICML.

[18]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[19]  Stephan Günnemann,et al.  Pitfalls of Graph Neural Network Evaluation , 2018, ArXiv.

[20]  Yaron Lipman,et al.  Invariant and Equivariant Graph Networks , 2018, ICLR.

[21]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[22]  L. Younes On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates , 1999 .

[23]  Yoshua Bengio,et al.  No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..

[24]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[25]  Oleg Verbitsky,et al.  Graph Isomorphism, Color Refinement, and Compactness , 2015, computational complexity.

[26]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[27]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[28]  Neil Immerman,et al.  An optimal lower bound on the number of variables for graph identification , 1989, 30th Annual Symposium on Foundations of Computer Science.

[29]  Razvan Pascanu,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[30]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[31]  Max Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[32]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[33]  Ruili Huang,et al.  Tox21Challenge to Build Predictive Models of Nuclear Receptor and Stress Response Pathways as Mediated by Exposure to Environmental Chemicals and Drugs , 2016, Front. Environ. Sci..

[34]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[35]  H. Robbins A Stochastic Approximation Method , 1951 .

[36]  Bernard Harris,et al.  Graph theory and its applications , 1970 .

[37]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[38]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[39]  Michalis Vazirgiannis,et al.  Kernel Graph Convolutional Neural Networks , 2017, ICANN.

[40]  Bruno Ribeiro,et al.  Subgraph Pattern Neural Networks for High-Order Graph Evolution Prediction , 2018, AAAI.

[41]  Barnabás Póczos,et al.  Equivariance Through Parameter-Sharing , 2017, ICML.

[42]  Alan L. Yuille,et al.  The Convergence of Contrastive Divergences , 2004, NIPS.

[43]  Ming Yang,et al.  3D Convolutional Neural Networks for Human Action Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[45]  Vijay S. Pande,et al.  Molecular graph convolutions: moving beyond fingerprints , 2016, Journal of Computer-Aided Molecular Design.

[46]  Kurt Mehlhorn,et al.  Efficient graphlet kernels for large graph comparison , 2009, AISTATS.

[47]  Jure Leskovec,et al.  Hierarchical Graph Representation Learning with Differentiable Pooling , 2018, NeurIPS.

[48]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[50]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Daniel M. Roy,et al.  Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  V. Sós,et al.  GRAPH LIMITS AND EXCHANGEABLE RANDOM GRAPHS , 2008 .

[53]  Vijay S. Pande,et al.  Low Data Drug Discovery with One-Shot Learning , 2016, ACS central science.

[54]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[55]  Günter Klambauer,et al.  DeepTox: Toxicity Prediction using Deep Learning , 2016, Front. Environ. Sci..

[56]  Sebastian G. Rohrer,et al.  Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data , 2009, J. Chem. Inf. Model..

[57]  Bruno Ribeiro,et al.  Graph Pattern Mining and Learning through User-Defined Relations , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[58]  Donald F. Towsley,et al.  Diffusion-Convolutional Neural Networks , 2015, NIPS.

[59]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[60]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[61]  Kevin Leyton-Brown,et al.  Deep Models of Interactions Across Sets , 2018, ICML.

[62]  Martin Grohe,et al.  Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks , 2018, AAAI.

[63]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[64]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[65]  Yee Whye Teh,et al.  Probabilistic symmetry and invariant neural networks , 2019, J. Mach. Learn. Res..

[66]  Andreas Ziehe,et al.  Learning Invariant Representations of Molecules for Atomization Energy Prediction , 2012, NIPS.