Controlling the high temperature mechanical behavior of Al alloys by precipitation and severe straining

[1]  R. Valiev,et al.  Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys , 2015 .

[2]  O. Andreau,et al.  Effect of short-term annealing on the microstructures and flow properties of an Al–1% Mg alloy processed by high-pressure torsion , 2014 .

[3]  R. Valiev,et al.  Grain Boundary Phenomena in an Ultrafine‐Grained Al–Zn Alloy with Improved Mechanical Behavior for Micro‐Devices , 2014 .

[4]  R. Valiev,et al.  Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy , 2014 .

[5]  A. Deschamps,et al.  Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy , 2014 .

[6]  R. Valiev,et al.  Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion , 2014 .

[7]  R. Valiev,et al.  Grain boundary films in Al–Zn alloys after high pressure torsion , 2014 .

[8]  C. Cepeda-Jiménez,et al.  Achieving microstructures prone to superplastic deformation in an Al–Zn–Mg–Cu alloy by equal channel angular pressing , 2013 .

[9]  T. Langdon,et al.  Microstructural evolution and electro-resistivity in HPT nickel , 2012 .

[10]  R. Valiev,et al.  Enhanced grain refinement of an Al–Mg–Si alloy by high-pressure torsion processing at 100 °C , 2012 .

[11]  C. Cepeda-Jiménez,et al.  High strain rate superplasticity at intermediate temperatures of the Al 7075 alloy severely processed by equal channel angular pressing , 2011 .

[12]  S. Ringer,et al.  Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy. , 2011, Ultramicroscopy.

[13]  R. Valiev,et al.  On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation , 2010, 1010.4644.

[14]  Peter V Liddicoat,et al.  Nanostructural hierarchy increases the strength of aluminium alloys. , 2010, Nature communications.

[15]  S. Dadbakhsh,et al.  Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process , 2010 .

[16]  S. Ringer,et al.  Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy , 2009 .

[17]  T. Langdon,et al.  The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion , 2008 .

[18]  Terence G. Langdon,et al.  Using high-pressure torsion for metal processing: Fundamentals and applications , 2008 .

[19]  J. C. Werenskiold,et al.  Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy , 2008 .

[20]  R. Valiev,et al.  Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation , 2008, 0808.3715.

[21]  T. Langdon,et al.  Particle and grain growth in an Al-Si alloy during high-pressure torsion , 2007 .

[22]  M. Sluiter,et al.  Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution , 2006 .

[23]  H. Weiland,et al.  The effect of predeformation on the β″ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy; AA6022 , 2005 .

[24]  D. G. Morris,et al.  The effect of coarse second-phase particles and fine precipitates on microstructure refinement and mechanical properties of severely deformed Al alloy , 2005 .

[25]  T. Langdon,et al.  Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion , 2005 .

[26]  T. Langdon,et al.  Influence of ECAP on precipitate distributions in a spray-cast aluminum alloy , 2005 .

[27]  T. Langdon,et al.  The microstructural characteristics of ultrafine-grained nickel , 2005 .

[28]  P. Prangnell,et al.  The effect of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains , 2005 .

[29]  S. Yannacopoulos,et al.  The effect of cold work on the precipitation kinetics of AA6111 aluminum , 2004 .

[30]  T. Langdon,et al.  Severe plastic deformation as a processing tool for developing superplastic metals , 2004 .

[31]  R. Valiev,et al.  Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al-Zn and Al-Mg alloys , 2004 .

[32]  R. Valiev,et al.  Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing , 2004 .

[33]  D. Laughlin,et al.  Phase relations and precipitation in Al–Mg–Si alloys with Cu additions , 2004 .

[34]  T. Langdon,et al.  Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy , 2003 .

[35]  E. Nes,et al.  On the origin of strain softening during deformation of aluminum in torsion to large strains , 2003 .

[36]  S. Spigarelli,et al.  A TEM investigation on the effect of semisolid forming on precipitation processes in an Al-Mg-Si Alloy , 2002 .

[37]  T. Langdon,et al.  Microstructural Control of an Al-Mg-Si Alloy Using Equal-Channel Angular Pressing , 2002 .

[38]  P. Prangnell,et al.  Modelling texture development during equal channel angular extrusion of aluminium , 2002 .

[39]  H. W. Zandbergen,et al.  Atomic model for GP-zones in a 6082 Al–Mg–Si system , 2001 .

[40]  Z. Horita,et al.  Microstructure of two-phase Al–1.7 at% Cu alloy deformed by equal-channel angular pressing , 2001 .

[41]  Patrick B. Berbon,et al.  OBSERVATIONS OF HIGH STRAIN RATE SUPERPLASTICITY IN COMMERCIAL ALUMINUM ALLOYS WITH ULTRAFINE GRAIN SIZES , 1997 .

[42]  Amit K. Ghosh,et al.  Grain elongation and anisotropic grain growth during superplastic deformation in an AlMgMnCu alloy , 1997 .

[43]  U. F. Kocks,et al.  Theory of torsion texture development , 1984 .