Multiscroll Chaotic attractors from a Modified Colpitts oscillator Model

A simple approach for generating (2N + 1)-scroll chaotic attractor from a modified Colpitts oscillator model is proposed in this paper. The key strategy is to increase the number of index-2 equilibrium points by introducing a triangle function to directly replace the nonlinearity term of Colpitts oscillator model. The dynamical characteristics of the new multiscroll chaotic system are studied comprehensively. A circuit realization structure is introduced and the experimental results demonstrate that (2N + 1)-scroll chaotic attractors can be obtained in practical circuit.

[1]  Weihua Deng,et al.  Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system , 2007 .

[2]  Henry Leung,et al.  Design and implementation of n-scroll chaotic attractors from a general jerk circuit , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Jinhu Lu,et al.  Generating multi-scroll chaotic attractors by thresholding , 2008 .

[4]  Xinghuo Yu,et al.  Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method , 2004, Autom..

[5]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[6]  Müstak E. Yalçin,et al.  Increasing the Entropy of a Random Number Generator Using n-scroll Chaotic attractors , 2007, Int. J. Bifurc. Chaos.

[7]  Guanrong Chen,et al.  Generating 2n‐wing attractors from Lorenz‐like systems , 2010, Int. J. Circuit Theory Appl..

[8]  J. Suykens,et al.  Generation of n-double scrolls (n=1, 2, 3, 4,...) , 1993 .

[9]  Ahmed S. Elwakil,et al.  1-d digitally-Controlled multiscroll Chaos Generator , 2007, Int. J. Bifurc. Chaos.

[10]  Henry Leung,et al.  Experimental verification of multidirectional multiscroll chaotic attractors , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Guanrong Chen,et al.  Multifolded torus chaotic attractors: design and implementation. , 2007, Chaos.

[12]  Serdar Ozoguz,et al.  n-scroll chaotic attractors from a first-order time-delay differential equation. , 2007, Chaos.

[13]  Wallace Kit-Sang Tang,et al.  A New Chaotic System Based on Multiple-Angle sinusoidal Function: Design and Implementation , 2009, Int. J. Bifurc. Chaos.

[14]  Guanrong Chen,et al.  Generating 2n-wing attractors from Lorenz-like systems , 2010 .

[15]  Tamás Roska,et al.  MOS‐integrable circuitry for multi‐scroll chaotic grid realization: A SPICE‐assisted proof , 2009, International journal of circuit theory and applications.

[16]  Wajdi M. Ahmad Generation and control of multi-scroll chaotic attractors in fractional order systems , 2005 .

[17]  Guanrong Chen,et al.  Generating chaotic attractors with multiple merged basins of attraction: a switching piecewise-linear control approach , 2003 .

[18]  Johan A. K. Suykens,et al.  Families of scroll Grid attractors , 2002, Int. J. Bifurc. Chaos.

[19]  Guanrong Chen,et al.  A general multiscroll Lorenz system family and its realization via digital signal processors. , 2006, Chaos.

[20]  Michael Peter Kennedy,et al.  Nonlinear analysis of the Colpitts oscillator and applications to design , 1999 .

[21]  Xinghuo Yu,et al.  Design and analysis of multiscroll chaotic attractors from saturated function series , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Guanrong Chen,et al.  Generation of $n\times m$-Wing Lorenz-Like Attractors From a Modified Shimizu–Morioka Model , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[23]  A. S. ELWAKIL,et al.  A System and Circuit for Generating "multi-Butterflies" , 2008, Int. J. Bifurc. Chaos.

[24]  Ahmed S. Elwakil,et al.  Multiscroll Chaotic Oscillators: The Nonautonomous Approach , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[25]  Weihua Deng,et al.  Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control. , 2006, Chaos.