Incremental indexing and distributed image search using shared randomized vocabularies

We present a cooperative framework for content-based image retrieval for the realistic setting where images are distributed across multiple cooperating servers. The proposed method is in line with bag-of-features approaches but uses fully data-independent, randomized structures, shared by the cooperating servers, to map image features to common visual words. A coherent, global image similarity measure (which is a kernel) is computed in a distributed fashion over visual words, by only requiring a small amount of data transfers between nodes. Our experiments on various image types show that this framework is a very promising step towards large-scale, distributed content-based image retrieval.

[1]  Raphaël Marée,et al.  Content-based Image Retrieval by Indexing Random Subwindows with Randomized Trees , 2007, IPSJ Trans. Comput. Vis. Appl..

[2]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[3]  R. Manmatha,et al.  Distributed image search in camera sensor networks , 2008, SenSys '08.

[4]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[5]  Alexei A. Efros,et al.  Scene completion using millions of photographs , 2008, Commun. ACM.

[6]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[7]  Ian D. Reid,et al.  Real-Time SLAM Relocalisation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[8]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[9]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Frédéric Jurie,et al.  Randomized Clustering Forests for Image Classification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Antonio Torralba,et al.  Small codes and large image databases for recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Martin Scholz,et al.  Client-Friendly Classification over Random Hyperplane Hashes , 2008, ECML/PKDD.

[13]  Ian H. Witten,et al.  Managing gigabytes (2nd ed.): compressing and indexing documents and images , 1999 .

[14]  Cordelia Schmid,et al.  Vector Quantizing Feature Space with a Regular Lattice , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Andrea Esuli,et al.  CoPhIR: a Test Collection for Content-Based Image Retrieval , 2009, ArXiv.

[16]  Ian H. Witten,et al.  Managing Gigabytes: Compressing and Indexing Documents and Images , 1999 .

[17]  Vincent Lepetit,et al.  Fast Keypoint Recognition in Ten Lines of Code , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[19]  H. Müller,et al.  Informatics in radiology (infoRAD): benefits of content-based visual data access in radiology. , 2005, Radiographics : a review publication of the Radiological Society of North America, Inc.

[20]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[22]  Cordelia Schmid,et al.  Evaluation of GIST descriptors for web-scale image search , 2009, CIVR '09.

[23]  Jiebo Luo,et al.  Selective hidden random fields: Exploiting domain-specific saliency for event classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Peter Norvig,et al.  The Unreasonable Effectiveness of Data , 2009, IEEE Intelligent Systems.

[25]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[26]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[27]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[28]  Hermann Ney,et al.  The CLEF 2005 Automatic Medical Image Annotation Task , 2006, International Journal of Computer Vision.

[29]  Raphaël Marée,et al.  Random subwindows for robust image classification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  Trevor Darrell,et al.  Adaptive Vocabulary Forests br Dynamic Indexing and Category Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[31]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[32]  William G Finn,et al.  Diagnostic pathology and laboratory medicine in the age of "omics": a paper from the 2006 William Beaumont Hospital Symposium on Molecular Pathology. , 2007, The Journal of molecular diagnostics : JMD.

[33]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[34]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Svetlana Lazebnik,et al.  Supervised Learning of Quantizer Codebooks by Information Loss Minimization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.