Parker Solar Probe Enters the Magnetically Dominated Solar Corona
暂无分享,去创建一个
N. Raouafi | R. Livi | A. Rahmati | G. Zank | M. Maksimović | S. Bale | J. Halekas | M. Moncuquet | A. Szabo | J. Kasper | K. Korreck | J. Bonnell | A. Case | K. Klein | M. Velli | Jia Huang | D. Malaspina | D. Stansby | M. Pulupa | R. Macdowall | S. Badman | K. Goetz | T. Dudok de Wit | P. Whittlesey | M. Stevens | D. Larson | E. Lichko | C. H. K. Chen | K. Klein
[1] M. Owens,et al. A statistical evaluation of ballistic backmapping for the slow solar wind: The interplay of solar wind acceleration and corotation , 2021 .
[2] G. Zank,et al. Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe , 2021, Physics of Plasmas.
[3] D. Mccomas,et al. Switchbacks Explained: Super-Parker Fields—The Other Side of the Sub-Parker Spiral , 2021, 2102.03696.
[4] G. Zank,et al. The Origin of Switchbacks in the Solar Corona: Linear Theory , 2020, The Astrophysical Journal.
[5] D. Stansby,et al. pfsspy: A Python package for potential field source surface modelling , 2020, J. Open Source Softw..
[6] A. Rouillard,et al. Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU , 2020, Astronomy & Astrophysics.
[7] W. Matthaeus,et al. Shear-driven Transition to Isotropically Turbulent Solar Wind Outside the Alfvén Critical Zone , 2020, The Astrophysical Journal.
[8] L. Fisk,et al. Global Circulation of the Open Magnetic Flux of the Sun , 2020, The Astrophysical Journal.
[9] D. Stansby. In-situ Observations of the Sub-Alfvénic Solar Wind by Helios , 2020, Research Notes of the AAS.
[10] R. Livi,et al. The Solar Probe ANalyzers—Electrons on the Parker Solar Probe , 2020, The Astrophysical Journal Supplement Series.
[11] B. Chandran,et al. In-situ Switchback Formation in the Expanding Solar Wind , 2020, The Astrophysical Journal.
[12] N. Raouafi,et al. Sharp Alfvénic Impulses in the Near-Sun Solar Wind , 2019, The Astrophysical Journal Supplement Series.
[13] Michael T. McManus,et al. The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere , 2019, The Astrophysical Journal Supplement Series.
[14] M. Maksimović,et al. First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe/FIELDS , 2019, The Astrophysical Journal Supplement Series.
[15] R. Livi,et al. The Solar Probe Cup on the Parker Solar Probe , 2019, The Astrophysical Journal Supplement Series.
[16] R. Livi,et al. Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter , 2019, The Astrophysical Journal Supplement Series.
[17] D. Stansby,et al. Highly structured slow solar wind emerging from an equatorial coronal hole , 2019, Nature.
[18] N. Pogorelov,et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind , 2019, Nature.
[19] J. Kasper,et al. Strong Preferential Ion Heating is Limited to within the Solar Alfvén Surface , 2019, The Astrophysical Journal.
[20] J. Kasper,et al. A Comparison of Alpha Particle and Proton Beam Differential Flows in Collisionally Young Solar Wind , 2018, The Astrophysical Journal.
[21] W. Matthaeus,et al. Contextual Predictions for the Parker Solar Probe. I. Critical Surfaces and Regions , 2018, The Astrophysical Journal Supplement Series.
[22] D. Werthimer,et al. The FIELDS Instrument Suite for Solar Probe Plus , 2016, Space Science Reviews.
[23] John W. Belcher,et al. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus , 2015 .
[24] J. Steinberg,et al. Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle , 2007 .
[25] S. Cranmer,et al. Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence , 2007, astro-ph/0703333.
[26] S. Cranmer. Ion Cyclotron Wave Dissipation in the Solar Corona: The Summed Effect of More than 2000 Ion Species , 2000 .
[27] P. Dmitruk,et al. Coronal Heating by Magnetohydrodynamic Turbulence Driven by Reflected Low-Frequency Waves , 1999 .
[28] Giampiero Naletto,et al. UVCS/SOHO Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona , 1998 .
[29] N. R. Sheeley,et al. On potential field models of the solar corona , 1992 .
[30] L. Davis,et al. The angular momentum of the solar wind. , 1967 .
[31] E. Parker. Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .
[32] H. Alfvén,et al. Existence of Electromagnetic-Hydrodynamic Waves , 1942, Nature.
[33] A. Case,et al. Alfvén Speed Transition Zone in the Solar Corona , 2021, The Astrophysical Journal Letters.