Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel.

A stable system of enantioselectively recognising L-tryptophan based on β-cyclodextrin-modified single nanochannel fabricated in a polyimide membrane was demonstrated, and we realized the chiral recognition of an essential amino acid with this system for the first time.

[1]  Xiao‐Qi Yu,et al.  Zn(II) promoted dramatic enhancement in the enantioselective fluorescent recognition of functional chiral amines by a chiral aldehyde , 2014 .

[2]  He Tian,et al.  Single molecule analysis of light-regulated RNA:spiropyran interactions , 2014 .

[3]  Juan Liu,et al.  Physical origin of dynamic ion transport features through single conical nanopores at different bias frequencies , 2014 .

[4]  Y. Sha,et al.  Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid). , 2014, Analytical chemistry.

[5]  Baoxin Li,et al.  Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. , 2014, Analytica chimica acta.

[6]  Taolei Sun,et al.  Chirality-driven wettability switching and mass transfer. , 2014, Angewandte Chemie.

[7]  Rui Gao,et al.  Nanopore-based sequencing and detection of nucleic acids. , 2013, Angewandte Chemie.

[8]  Ye Tian,et al.  From symmetric to asymmetric design of bio-inspired smart single nanochannels. , 2013, Chemical communications.

[9]  Lei Jiang,et al.  Malachite Green Derivative–Functionalized Single Nanochannel: Light‐and‐pH Dual‐Driven Ionic Gating , 2012, Advanced materials.

[10]  Jianding Qiu,et al.  A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase. , 2012, Journal of chromatography. A.

[11]  H. Bayley,et al.  Continuous stochastic detection of amino acid enantiomers with a protein nanopore. , 2012, Angewandte Chemie.

[12]  Xu Hou,et al.  Building bio-inspired artificial functional nanochannels: from symmetric to asymmetric modification. , 2012, Angewandte Chemie.

[13]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[14]  H. Ohno,et al.  Co-organisation of ionic liquids with amphiphilic diethanolamines: construction of 3D continuous ionic nanochannels through the induction of liquid–crystalline bicontinuous cubic phases , 2012 .

[15]  Lei Jiang,et al.  pH gated glucose responsive biomimetic single nanochannels. , 2012, Chemical communications.

[16]  Chao Yao,et al.  Enantioselective recognition of glutamic acid enantiomers based on poly(aniline-co-m-aminophenol) electrode column , 2012 .

[17]  C. Dekker,et al.  Biomimetic nanopores: learning from and about nature. , 2011, Trends in biotechnology.

[18]  Y. Vander Heyden,et al.  Chiral separations in normal-phase liquid chromatography: Enantioselectivity of recently commercialized polysaccharide-based selectors. Part II. Optimization of enantioselectivity. , 2011, Journal of pharmaceutical and biomedical analysis.

[19]  M. Marina,et al.  Chiral separation of agricultural fungicides. , 2011, Journal of chromatography. A.

[20]  Lei Jiang,et al.  Bio-inspired smart gating nanochannels based on polymer films , 2011 .

[21]  Xu Hou,et al.  Enantioselective recognition in biomimetic single artificial nanochannels. , 2011, Journal of the American Chemical Society.

[22]  Wenchang Wang,et al.  Enantioselective recognition of amino acids based on molecularly imprinted polyaniline electrode column , 2011 .

[23]  K. Hidajat,et al.  Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe(3)O(4)/SiO(2) core-shell nanoparticles. , 2011, Journal of colloid and interface science.

[24]  H. Bayley,et al.  Tuning the cavity of cyclodextrins: altered sugar adaptors in protein pores. , 2011, Journal of the American Chemical Society.

[25]  Reinhard Neumann,et al.  Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. , 2010, ACS nano.

[26]  Sang‐Hyun Oh,et al.  Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. , 2010, Chemical science.

[27]  R. Neumann,et al.  Biosensing with functionalized single asymmetric polymer nanochannels. , 2010, Macromolecular bioscience.

[28]  L. Qi,et al.  Enantioseparation of dansyl amino acids by ligand-exchange capillary electrophoresis with zinc(II)-L-phenylalaninamide complex. , 2009, Journal of separation science.

[29]  D. Fink,et al.  Glucose determination using a re-usable enzyme-modified ion track membrane sensor. , 2009, Biosensors & bioelectronics.

[30]  S. Bhosale,et al.  Comparative binding study of neurotransmitters in hydrophobic and hydrophilic yoctowells in water , 2009 .

[31]  Reinhard Neumann,et al.  Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. , 2008, Journal of the American Chemical Society.

[32]  Long Chen,et al.  Electric energy generation in single track-etched nanopores , 2008 .

[33]  Jiahai Wang,et al.  A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. , 2008, Nanomedicine.

[34]  Z. Siwy,et al.  Nanofluidic Bipolar Transistors , 2008 .

[35]  E. Izake Chiral discrimination and enantioselective analysis of drugs: an overview. , 2007, Journal of pharmaceutical sciences.

[36]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[37]  Rashid Bashir,et al.  Solid-state nanopore channels with DNA selectivity. , 2007, Nature nanotechnology.

[38]  H. Bayley,et al.  Stochastic detection of enantiomers. , 2006, Journal of the American Chemical Society.

[39]  P. Höglund,et al.  A Double-Blind Study of the Sedative Effects of the Thalidomide Enantiomers in Humans , 1998, Journal of Pharmacokinetics and Biopharmaceutics.

[40]  Xiaodong Fan,et al.  Synthesis and Characterization of β‐Cyclodextrin Based Functional Monomers and its Copolymers with N‐isopropylacrylamide , 2003 .

[41]  D. Vollhardt,et al.  Effect of molecular chirality on the morphology of biomimetic langmuir monolayers. , 2003, Chemical reviews.

[42]  C. Knobler,et al.  Enantioselective Discrimination of D‐ and L‐Phenylalanine by Chiral Polyaniline Thin Films , 2003 .

[43]  Reinhard Neumann,et al.  Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal , 2003 .

[44]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[45]  H. Aboul‐Enein,et al.  S-perindopril assay using a potentiometric, enantioselective membrane electrode. , 1999, Chirality.

[46]  R. M. Izatt,et al.  Enantiomer-selectivity of ion-selective electrodes based on a chiral crown-ether ionophore , 1997 .

[47]  S. Davies,et al.  Chemical asymmetric synthesis , 1989, Nature.

[48]  D. Kondepudi,et al.  Weak neutral currents and the origin of biomolecular chirality , 1985, Nature.

[49]  Stephen F. Mason,et al.  Origins of biomolecular handedness , 1984, Nature.