Three novel interpenetrating diamondoid networks from self-assembly of 1,12-dodecanedinitrile with silver(I) salts.

The self-assembly of 1,12-dodecanedinitrile (ddn) with various silver salts (NO(3)(-), PF(6)(-), AsF(6)(-), ClO(4)(-)) afforded new polymeric coordination networks with the general formula [Ag(ddn)(2)]X. All these species contain interpenetrating diamondoid nets showing interesting features: with X=NO(3)(-) the cationic [Ag(ddn)(2)](+) network exhibits the highest interpenetration (tenfold) ever found within diamondoid nets exclusively based on coordinative bonds. When X=PF(6)(-) or AsF(6)(-) an eightfold diamondoid network is obtained that shows an unusual [4+4] mode of interpenetration, instead of the "normal" set of eight nets equally translated along a principal axis of the adamantanoid cages. The polymeric species that forms with X=ClO(4)(-) is a fourfold interpenetrating diamondoid network; the lower degree of interpenetration in this case is related to the conformation assumed by the flexible ddn ligands.

[1]  Alexander J. Blake,et al.  Crystal engineering: the effects of π–π interactions incopper(i) and silver(i) complexes of 2,7-diazapyrene , 1997 .

[2]  Xiao-Zeng You,et al.  An unprecedented six-fold anion-type chiral diamondoid-like eight-coordinate Cd(II) coordination polymer with a second-order nonlinear optical effect , 2001 .

[3]  C. Kepert,et al.  A porous chiral framework of coordinated 1,3,5-benzenetricarboxylate: quadruple interpenetration of the (10,3)-a network , 1998 .

[4]  Otto Ermer,et al.  Five-fold diamond structure of adamantane-1,3,5,7-tetracarboxylic acid , 1988 .

[5]  J. Zubieta,et al.  Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. , 1999, Angewandte Chemie.

[6]  Yoshihiko Saito,et al.  The Crystal Structure of Bis(adiponitrilo)copper(I) Nitrate , 1959 .

[7]  David J. Williams,et al.  A New Type of Metal-Organic Large-Pore Zeotype , 1999 .

[8]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[9]  Stuart R. Batten,et al.  Copper(I) dicyanamide coordination polymers: ladders, sheets, layers, diamond-like networks and unusual interpenetration , 2000 .

[10]  Takehisa Dewa,et al.  Charge-Transfer Diamondoid Lattices: An Unprecedentedly Huge and Highly Catenating Diamondoid Network Arising from a Tetraphenol as a Tetrahedral Node and Benzoquinone as a Linear Spacer. , 2000, Angewandte Chemie.

[11]  Scott R. Wilson,et al.  Crystallization of 4,4′-biphenyldicarbonitrile with silver(I) salts: a change in topology concomitant with a change in counterion leading to a ninefold diamondoid network , 1995 .

[12]  Geoffrey A. Ozin,et al.  Self‐Assembling Frameworks: Beyond microporous oxides , 1996 .

[13]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[14]  Christoph Janiak Funktionelle organische Zeolith‐Analoga auf der Grundlage metallorganischer Koordinationsnetzwerke , 1997 .

[15]  Scott R. Wilson,et al.  A Packing Model for Interpenetrated Diamondoid Structures—an Interpretation Based on the Constructive Interference of Supramolecular Networks , 1997 .

[16]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[17]  Michael O'Keeffe,et al.  Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1 , 2000 .

[18]  A. F. Wells Three-dimensional nets and polyhedra , 1977 .

[19]  Jacek Klinowski,et al.  Systematic enumeration of crystalline networks , 1999, Nature.

[20]  Stephen T. Hyde,et al.  From 2D hyperbolic forests to 3D Euclidean entangled thickets , 2000 .

[21]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[22]  R. Nesper,et al.  On tilings and patterns on hyperbolic surfaces and their relation to structural chemistry. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Robert C. Thompson,et al.  Complex polymeric cations of copper(I) with graphite- and diamond-related lattices; crystal structures of poly-tris(.mu.-2,5-dimethylpyrazine)dicopper(I) hexafluorophosphate and poly-bis(.mu.-2,5-dimethylpyrazine)copper(I) hexafluorophosphate , 1993 .

[24]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[25]  Davide M. Proserpio,et al.  Complex Interwoven Polymeric Frames from the Self-Assembly of Silver(I) Cations and Sebaconitrile , 1999 .

[26]  R. Robson,et al.  Einander durchdringende Netze: geordnete, periodische Verschlingung , 1998 .

[27]  Alexander J. Blake,et al.  Inorganic crystal engineering using self-assembly of tailored building-blocks , 1999 .

[28]  M. Zaworotko Crystal engineering of diamondoid networks , 1994 .

[29]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[30]  C. Janiak Functional Organic Analogues of Zeolites Based on Metal–Organic Coordination Frameworks , 1997 .

[31]  J. Zubieta,et al.  Organisch‐anorganische Hybridmaterialien: von „einfachen”︁ Koordinationspolymeren zu Molybdänoxiden mit Organodiamin‐Templaten , 1999 .

[32]  T. Kuroda–Sowa,et al.  Toward the Construction of Functional Solid-State Supramolecular Metal Complexes Containing Copper(I) And Silver(I) , 1998 .

[33]  Scott R. Wilson,et al.  Coordination Networks of 3,3'-Dicyanodiphenylacetylene and Silver(I) Salts: Structural Diversity through Changes in Ligand Conformation and Counterion. , 1997, Inorganic chemistry.