Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions

[1]  Leonardo Morlino,et al.  Inequalities , 2020, Algebra for Parents.

[2]  Stephen P. Boyd,et al.  Convex Optimization , 2004, IEEE Transactions on Automatic Control.

[3]  C. W. Scherer,et al.  Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..

[4]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[5]  Pierre-Alexandre Bliman,et al.  An existence result for polynomial solutions of parameter-dependent LMIs , 2004, Syst. Control. Lett..

[6]  C. Scherer Higher-order relaxations for robust LMI problems with verifications for exactness , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[7]  Pablo A. Parrilo,et al.  Exploiting structure in sum of squares programs , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[8]  Graziano Chesi,et al.  Robust stability of polytopic systems via polynomially parameter-dependent Lyapunov functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[9]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[10]  Valter J. S. Leite,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[11]  Valter J. S. Leite,et al.  LMI based robust stability conditions for linear uncertain systems: a numerical comparison , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[12]  Didier Henrion,et al.  Solving Global Optimization Problems over Polynomials with GloptiPoly 2.1 , 2002, COCOS.

[13]  Pedro Luis Dias Peres,et al.  An LMI condition for the robust stability of uncertain continuous-time linear systems , 2002, IEEE Trans. Autom. Control..

[14]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[15]  B. Reznick,et al.  A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra , 2001 .

[16]  Pedro Luis Dias Peres,et al.  A less conservative LMI condition for the robust stability of discrete-time uncertain systems , 2001, Syst. Control. Lett..

[17]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[18]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[19]  J. Geromel,et al.  LMI characterization of structural and robust stability: the discrete-time case , 1999 .

[20]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[21]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[22]  J. Lasserre,et al.  On parameter-dependent Lyapunov functions for robust stability of linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[23]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[24]  M. Overton,et al.  Semidefinite programming , 2002, Eur. J. Oper. Res..

[25]  Robert E. Skelton,et al.  Stability tests for constrained linear systems , 2001 .

[26]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[27]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .