A new insight into the consistency of the SPH interpolation formula
暂无分享,去创建一个
Leonardo Di G. Sigalotti | Otto Rendón | Jaime Klapp | Carlos A. Vargas | Fidel Cruz | F. Cruz | C. Vargas | J. Klapp | L. Sigalotti | O. Rendón | Otto Rendón
[1] J. Monaghan. Particle methods for hydrodynamics , 1985 .
[2] Guirong Liu,et al. Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .
[3] David A. Fulk. A Numerical Analysis of Smoothed Particle Hydrodynamics , 1994 .
[4] R. Young,et al. 75.9 Euler’s Constant , 1991, The Mathematical Gazette.
[5] Keivan Kiani,et al. Nanomechanical sensors based on elastically supported double-walled carbon nanotubes , 2015, Appl. Math. Comput..
[6] J. Bonet,et al. Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .
[7] H. Wozniakowski. Average case complexity of multivariate integration , 1991 .
[8] J. Monaghan,et al. Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .
[9] K. Kiani,et al. Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method , 2010 .
[10] B. Ben Moussa,et al. Convergence of SPH Method for Scalar Nonlinear Conservation Laws , 2000, SIAM J. Numer. Anal..
[11] R. Fatehi,et al. Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives , 2011, Comput. Math. Appl..
[12] L. Schwartz. Théorie des distributions , 1966 .
[13] K. Kiani. Characterization of free vibration of elastically supported double-walled carbon nanotubes subjected to a longitudinally varying magnetic field , 2013 .
[14] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[15] W. Dehnen,et al. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.
[16] T. Belytschko,et al. Element‐free Galerkin methods , 1994 .
[17] Frederic A. Rasio. Particle Methods in Astrophysical Fluid Dynamics , 2000 .
[18] Keivan Kiani,et al. A model for the evolution of concrete deterioration due to reinforcement corrosion , 2010, Math. Comput. Model..
[19] K. Kiani,et al. Parametric Analyses of Multispan Viscoelastic Shear Deformable Beams Under Excitation of a Moving Mass , 2009 .
[20] J. Strader,et al. DETECTION OF A DISTINCT METAL-POOR STELLAR HALO IN THE EARLY-TYPE GALAXY NGC 3115 , 2014, 1412.2752.
[21] L. Hernquist,et al. NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS , 2014, 1410.4222.
[22] Nikolaus A. Adams,et al. A transport-velocity formulation for smoothed particle hydrodynamics , 2013, J. Comput. Phys..
[23] O. Agertz,et al. Resolving mixing in smoothed particle hydrodynamics , 2009, 0906.0774.
[24] J. Monaghan. Smoothed particle hydrodynamics , 2005 .
[25] M. Lastiwka,et al. Truncation error in mesh‐free particle methods , 2006 .
[26] Joep H. M. Evers,et al. Recent results in the systematic derivation and convergence of SPH , 2016, 1612.06687.
[27] F. Burk. Euler's Constant , 1985 .
[28] J. Monaghan. Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .
[29] E. Grenier,et al. ON THE REGULARIZATION OF THE PRESSURE FIELD IN COMPRESSIBLE EULER EQUATIONS , 1997 .
[30] R. Staroszczyk. Application of an Element-free Galerkin Method to Water Wave Propagation Problems , 2014 .
[31] Sofiane Khelladi,et al. Smoothed Particle Hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations , 2018, J. Comput. Phys..
[32] L. Lucy. A numerical approach to the testing of the fission hypothesis. , 1977 .
[33] K. Y. Lam,et al. Constructing smoothing functions in smoothed particle hydrodynamics with applications , 2003 .
[34] E. Grenier,et al. The convergence of the SPH method , 1998 .
[35] Gui-Rong Liu,et al. Restoring particle consistency in smoothed particle hydrodynamics , 2006 .
[36] Li,et al. Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .
[37] Indra Vir Singh,et al. Parallel Meshless EFG Solution for Fluid Flow Problems , 2005 .
[38] Nikolaus A. Adams,et al. Towards consistence and convergence of conservative SPH approximations , 2015, J. Comput. Phys..
[39] Hossein M. Shodja,et al. Gradient reproducing kernel particle method , 2008 .
[40] Stephan Rosswog,et al. Astrophysical smooth particle hydrodynamics , 2009, 0903.5075.
[41] Wing Kam Liu,et al. Reproducing kernel particle methods , 1995 .
[42] Leonardo Di G. Sigalotti,et al. On the kernel and particle consistency in smoothed particle hydrodynamics , 2016, 1605.05245.
[43] Holger Wendland,et al. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..
[44] Romesh C. Batra,et al. Modified smoothed particle hydrodynamics method and its application to transient problems , 2004 .
[45] Keivan Kiani,et al. A nonlocal meshless solution for flexural vibrations of double-walled carbon nanotubes , 2014, Appl. Math. Comput..
[46] Hyun Gyu Kim,et al. Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations , 1999 .
[47] Stefano Sibilla,et al. An algorithm to improve consistency in Smoothed Particle Hydrodynamics , 2015 .
[48] Alireza Hashemian,et al. A remedy to gradient type constraint dilemma encountered in RKPM , 2007, Adv. Eng. Softw..
[49] J. K. Chen,et al. Completeness of corrective smoothed particle method for linear elastodynamics , 1999 .