A new insight into the consistency of the SPH interpolation formula

Abstract In this paper, the consistency of the smoothed particle hydrodynamics (SPH) interpolation formula is investigated by analytical means. A novel error analysis is developed in n-dimensional space using the Poisson summation formula, which enables the simultaneous treatment of both the kernel and particle approximation errors for arbitrary particle distributions. New consistency integral relations are derived for the particle approximation, which correspond to the cosine Fourier transform of the kernel consistency conditions. The functional dependence of the error bounds on the SPH interpolation parameters, namely the smoothing length, h, and the number of particles within the kernel support, N , is demonstrated explicitly from which consistency conditions arise. As N → ∞ , the particle approximation converges to the kernel approximation independently of h provided that the particle mass scales with h as m∝hβ with β > n, where n is the spatial dimension. This implies that as h → 0, the joint limit m → 0, N → ∞ , and N → ∞ is necessary for complete convergence to the continuum, where N is the total number of particles. The analysis also reveals a dominant error term of the form ( ln N ) n / N for finite N , as it has long been conjectured based on the similarity between the SPH and the quasi-Monte Carlo estimates. When N ≫ 1 , the error of the SPH interpolant decays as N − 1 independently of the dimension. This ensures approximate partition of unity of the kernel volume.

[1]  J. Monaghan Particle methods for hydrodynamics , 1985 .

[2]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[3]  David A. Fulk A Numerical Analysis of Smoothed Particle Hydrodynamics , 1994 .

[4]  R. Young,et al.  75.9 Euler’s Constant , 1991, The Mathematical Gazette.

[5]  Keivan Kiani,et al.  Nanomechanical sensors based on elastically supported double-walled carbon nanotubes , 2015, Appl. Math. Comput..

[6]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[7]  H. Wozniakowski Average case complexity of multivariate integration , 1991 .

[8]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[9]  K. Kiani,et al.  Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method , 2010 .

[10]  B. Ben Moussa,et al.  Convergence of SPH Method for Scalar Nonlinear Conservation Laws , 2000, SIAM J. Numer. Anal..

[11]  R. Fatehi,et al.  Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives , 2011, Comput. Math. Appl..

[12]  L. Schwartz Théorie des distributions , 1966 .

[13]  K. Kiani Characterization of free vibration of elastically supported double-walled carbon nanotubes subjected to a longitudinally varying magnetic field , 2013 .

[14]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[15]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[16]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[17]  Frederic A. Rasio Particle Methods in Astrophysical Fluid Dynamics , 2000 .

[18]  Keivan Kiani,et al.  A model for the evolution of concrete deterioration due to reinforcement corrosion , 2010, Math. Comput. Model..

[19]  K. Kiani,et al.  Parametric Analyses of Multispan Viscoelastic Shear Deformable Beams Under Excitation of a Moving Mass , 2009 .

[20]  J. Strader,et al.  DETECTION OF A DISTINCT METAL-POOR STELLAR HALO IN THE EARLY-TYPE GALAXY NGC 3115 , 2014, 1412.2752.

[21]  L. Hernquist,et al.  NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS , 2014, 1410.4222.

[22]  Nikolaus A. Adams,et al.  A transport-velocity formulation for smoothed particle hydrodynamics , 2013, J. Comput. Phys..

[23]  O. Agertz,et al.  Resolving mixing in smoothed particle hydrodynamics , 2009, 0906.0774.

[24]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[25]  M. Lastiwka,et al.  Truncation error in mesh‐free particle methods , 2006 .

[26]  Joep H. M. Evers,et al.  Recent results in the systematic derivation and convergence of SPH , 2016, 1612.06687.

[27]  F. Burk Euler's Constant , 1985 .

[28]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[29]  E. Grenier,et al.  ON THE REGULARIZATION OF THE PRESSURE FIELD IN COMPRESSIBLE EULER EQUATIONS , 1997 .

[30]  R. Staroszczyk Application of an Element-free Galerkin Method to Water Wave Propagation Problems , 2014 .

[31]  Sofiane Khelladi,et al.  Smoothed Particle Hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations , 2018, J. Comput. Phys..

[32]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[33]  K. Y. Lam,et al.  Constructing smoothing functions in smoothed particle hydrodynamics with applications , 2003 .

[34]  E. Grenier,et al.  The convergence of the SPH method , 1998 .

[35]  Gui-Rong Liu,et al.  Restoring particle consistency in smoothed particle hydrodynamics , 2006 .

[36]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[37]  Indra Vir Singh,et al.  Parallel Meshless EFG Solution for Fluid Flow Problems , 2005 .

[38]  Nikolaus A. Adams,et al.  Towards consistence and convergence of conservative SPH approximations , 2015, J. Comput. Phys..

[39]  Hossein M. Shodja,et al.  Gradient reproducing kernel particle method , 2008 .

[40]  Stephan Rosswog,et al.  Astrophysical smooth particle hydrodynamics , 2009, 0903.5075.

[41]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[42]  Leonardo Di G. Sigalotti,et al.  On the kernel and particle consistency in smoothed particle hydrodynamics , 2016, 1605.05245.

[43]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[44]  Romesh C. Batra,et al.  Modified smoothed particle hydrodynamics method and its application to transient problems , 2004 .

[45]  Keivan Kiani,et al.  A nonlocal meshless solution for flexural vibrations of double-walled carbon nanotubes , 2014, Appl. Math. Comput..

[46]  Hyun Gyu Kim,et al.  Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations , 1999 .

[47]  Stefano Sibilla,et al.  An algorithm to improve consistency in Smoothed Particle Hydrodynamics , 2015 .

[48]  Alireza Hashemian,et al.  A remedy to gradient type constraint dilemma encountered in RKPM , 2007, Adv. Eng. Softw..

[49]  J. K. Chen,et al.  Completeness of corrective smoothed particle method for linear elastodynamics , 1999 .