High temperature stability of Cr-carbides in an experimental Co–Re-based alloy

Abstract The stability of the microstructure at high temperatures was studied in an experimental Co–Re-based alloy. The experimental alloy is mainly strengthened by Cr-carbides, particularly by those in the form of thin lamellar plates. Electron microscopic investigation on samples exposed for up to 1 000 h to temperatures of 1 000 and 1 200 °C showed that Cr23C6 type carbides present in the alloy in different morphologies are unstable at these temperatures. It was also observed that the alloy hardness dropped after exposing the samples to elevated temperatures and much of this loss occurred within the first 100 h. In-situ diffraction measurements with synchrotron radiation showed that carbide dissolution started as early as 3 h of holding at 1 000 °C. Moreover, in-situ small angle neutron scattering results indicated that the carbides at the grain boundaries and the blocky carbides dissolve first and then the thin lamellar carbides. Further, the enrichment of Cr in the Co-matrix phase, which took place due to the dissolution of Cr-carbides, stabilized a Cr–Re-rich σ phase. Although the dissolution of lamellar carbides results in a significant loss of strength, the formation of σ phase with extremely high hardness partly compensated the for loss. The σ phase is stable even at 1 200 °C.