Hardness of the undirected congestion minimization problem

We show that there is no (log log <i>M</i>)<sup>1-ε</sup> approximation for the undirected congestion minimization problem unless <i>NP</i> ⊆ <i>ZPTIME</i>(<i>n</i><sup><i>polylogn</i></sup>), where <i>M</i> is the size of the graph and ε is any positive constant.

[1]  Prabhakar Raghavan,et al.  Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..

[2]  Ran Raz,et al.  A parallel repetition theorem , 1995, STOC '95.

[3]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[4]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[5]  Joseph Naor,et al.  New hardness results for congestion minimization and machine scheduling , 2004, STOC '04.

[6]  Matthew Andrews,et al.  Hardness of buy-at-bulk network design , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.