Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

[1]  G. Schatz,et al.  Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering. , 2006, Journal of the American Chemical Society.

[2]  K. Kneipp,et al.  Surface-enhanced Raman optical activity on adenine in silver colloidal solution. , 2006, Analytical chemistry.

[3]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[4]  P. Johansson Illustrative direct ab initio calculations of surface Raman spectra. , 2005, Physical chemistry chemical physics : PCCP.

[5]  M. Pecul,et al.  Ab initio calculation of vibrational Raman optical activity , 2005 .

[6]  J. F. Arenas,et al.  Understanding complex surface-enhanced Raman scattering, using quantum chemical calculations , 2005 .

[7]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[8]  E. Blanch,et al.  Raman optical activity comes of age , 2004 .

[9]  John R. Lombardi,et al.  Ab Initio Frequency Calculations of Pyridine Adsorbed on an Adatom Model of a SERS Active Site of a Silver Surface , 2003 .

[10]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[11]  Naomi J. Halas,et al.  Controlling the surface enhanced Raman effect via the nanoshell geometry , 2003 .

[12]  P. Polavarapu The absolute configuration of bromochlorofluoromethane. , 2002, Angewandte Chemie.

[13]  Jacopo Tomasi,et al.  Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: A theoretical study , 2002 .

[14]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .

[15]  C. Haynes,et al.  Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .

[16]  M. Halls,et al.  Surface-Enhanced Raman Spectra of Phthalimide. Interpretation of the SERS Spectra of the Surface Complex Formed on Silver Islands and Colloids , 2000 .

[17]  Michelle Foster,et al.  On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory , 1998 .

[18]  L. Barron,et al.  Absolute Configuration of Bromochlorofluoromethane from Experimental and Ab Initio Theoretical Vibrational Raman Optical Activity , 1997 .

[19]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[20]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[21]  Y. Shapira,et al.  Studies of C60 thin films using surface photovoltage spectroscopy , 1997 .

[22]  L. Nafie Infrared and Raman vibrational optical activity: theoretical and experimental aspects. , 1997, Annual review of physical chemistry.

[23]  L. Barron,et al.  Recent Developments in Raman Optical Activity of Biopolymers , 1996 .

[24]  L. Barron,et al.  RAYLEIGH AND RAMAN OPTICAL ACTIVITY FROM CHIRAL SURFACES AND INTERFACES , 1995 .

[25]  Laurence D. Barron,et al.  Rayleigh and Raman optical activity from chiral surfaces , 1994 .

[26]  G. Schatz,et al.  Ab initio and semiempirical molecular orbital studies of surface enhanced and bulk hyper‐Raman scattering from pyridine , 1992 .

[27]  L. Hecht,et al.  Theory of natural Raman optical activity , 1991 .

[28]  Prasad L. Polavarapu,et al.  Ab initio vibrational Raman and Raman optical activity spectra , 1990 .

[29]  L. Nafie,et al.  Dual circular polarization raman optical activity , 1989 .

[30]  R. Birke,et al.  Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions , 1986 .

[31]  H. Schaefer,et al.  Analytic Raman intensities from molecular electronic wave functions , 1986 .

[32]  L. Barron,et al.  Stokes—antiStokes asymmetry in natural Raman optical activity , 1985 .

[33]  S. Efrima Raman optical activity of molecules adsorbed on metal surfaces: Theory , 1985 .

[34]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[35]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[36]  S. Efrima The effect of large electric field gradients on the Raman optical activity of molecules adsorbed on metal surfaces , 1983 .

[37]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[38]  M. Moskovits Surface selection rules , 1982 .

[39]  Martin Moskovits,et al.  Electric field gradient effects on the spectroscopy of adsorbed molecules , 1981 .

[40]  Dau-Sing Y. Wang,et al.  Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. , 1980, Applied optics.

[41]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[42]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[43]  David L. Andrews,et al.  On three‐dimensional rotational averages , 1977 .

[44]  Peter J. Feibelman,et al.  Microscopic calculation of electromagnetic fields in refraction at a jellium-vacuum interface , 1975 .

[45]  William F. Murphy,et al.  Gas Phase Raman Intensities: A Review of “Pre-Laser” Data , 1969 .

[46]  P. Atkins,et al.  Rayleigh scattering of polarized photons by molecules , 1969 .

[47]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[48]  Пётр Петрович Лазарев Handbuch der Radiologie , 1915 .