The Euler-Poincaré Equations in Geophysical Fluid Dynamics

Recent theoretical work has developed the Hamilton's-principle analog of Lie-Poisson Hamiltonian systems defined on semidirect products. The main theoretical results are twofold: 1. Euler-Poincare equations (the Lagrangian analog of Lie-Poisson Hamiltonian equations) are derived for a parameter dependent Lagrangian from a general variational principle of Lagrange d'Alembert type in which variations are constrained; 2. an abstract Kelvin-Noether theorem is derived for such systems. By imposing suitable constraints on the variations and by using invariance properties of the Lagrangian, as one does for the Euler equations for the rigid body and ideal fluids, we cast several standard Eulerian models of geophysical fluid dynamics (GFD) at various levels of approximation into Euler-Poincare form and discuss their corresponding Kelvin-Noether theorems and potential vorticity conservation laws. The various levels of GFD approximation are related by substituting a sequence of velocity decompositions and asymptotic expansions into Hamilton's principle for the Euler equations of a rotating stratified ideal incompressible fluid. We emphasize that the shared properties of this sequence of approximate ideal GFD models follow directly from their Euler-Poincare formulations. New modifications of the Euler-Boussinesq equations and primitive equations are also proposed in which nonlinear dispersion adaptively filters high wavenumbers and thereby enhances stability and regularity without compromising either low wavenumber behavior or geophysical balances.

[1]  Jerrold E. Marsden,et al.  Variational principles on principal fiber bundles: A geometry theory of Clebsch potentials and Lin constraints , 1987 .

[2]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[3]  Darryl D. Holm,et al.  Nonlinear stability analysis of stratified fluid equilibria , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[5]  P. Gent,et al.  Scaling Analysis of Curved Fronts. Validity of the Balance Equations and Semigeostrophy , 1994 .

[6]  J. Marsden,et al.  Lagrangian reduction and the double spherical pendulum , 1993 .

[7]  H. Poincaré Sur la Stabilite de l'Equilibre des Figures Pyriformes Affectees par une Masse Fluide en Rotation , 1902 .

[8]  J. Barth,et al.  On Intermediate Models for Barotropic Continental Shelf and Slope Flow Fields. Part I: Formulation and Comparison of Exact Solutions , 1990 .

[9]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[10]  Francis P. Bretherton,et al.  A note on Hamilton's principle for perfect fluids , 1970, Journal of Fluid Mechanics.

[11]  R. Salmon New equations for nearly geostrophic flow , 1985, Journal of Fluid Mechanics.

[12]  J. Allen,et al.  On Intermediate Models for Stratified Flow , 1993 .

[13]  Jerrold E. Marsden,et al.  Lagrangian Reduction by Stages , 2001 .

[14]  J. Barth,et al.  On Intermediate Models for Barotropic Continental Shelf and Slope Flow Fields. Part II: Comparison of Numerical Model Solutions in Doubly Periodic Domains , 1990 .

[15]  M. Cullen,et al.  Properties of the Lagrangian Semigeostrophic Equations , 1989 .

[16]  Darryl D. Holm,et al.  The Maxwell–Vlasov equations in Euler–Poincaré form , 1998, chao-dyn/9801016.

[17]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[18]  Darryl D. Holm,et al.  Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow , 1998, chao-dyn/9804026.

[19]  Jerrold E. Marsden,et al.  Lin constraints, Clebsch potentials and variational principles , 1987 .

[20]  A. Weinstein Hamiltonian structure for drift waves and geostrophic flow , 1983 .

[21]  Darryl D. Holm,et al.  Poisson brackets and clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity , 1983 .

[22]  Darryl D. Holm,et al.  Long-time shallow-water equations with a varying bottom , 1997, Journal of Fluid Mechanics.

[23]  Brian J. Hoskins,et al.  The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations. , 1975 .

[24]  Darryl D. Holm,et al.  The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.

[25]  Jerrold E. Marsden,et al.  Hamiltonian structure and Lyapunov stability for ideal continuum dynamics , 1986 .

[26]  Darryl D. Holm,et al.  Nonlinear stability analysis of inviscid flows in three dimensions: incompressible fluids and barotropic fluids , 1987 .

[27]  S. Leibovich,et al.  A rational model for Langmuir circulations , 1976, Journal of Fluid Mechanics.

[28]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[29]  P. Gent,et al.  Intermediate Models of Planetary Circulations in the Atmosphere and Ocean , 1980 .

[30]  J. G. Charney,et al.  On the Scale of Atmospheric Motions , 1990 .

[31]  P. Gent,et al.  Consistent balanced models in bounded and periodic domains , 1983 .

[32]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[33]  B. Cushman-Roisin Introduction to Geophysical Fluid Dynamics , 1994 .

[34]  Jerrold E. Marsden,et al.  EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .

[35]  P. Gent,et al.  Regimes of validity for balanced models , 1983 .

[36]  D. G. Andrews,et al.  An exact theory of nonlinear waves on a Lagrangian-mean flow , 1978, Journal of Fluid Mechanics.

[37]  Jerrold E. Marsden,et al.  Hamiltonian systems with symmetry, coadjoint orbits and plasma physics , 1983 .

[38]  Toward an extended-geostrophic Euler-Poincare model for mesoscale oceanographic flow , 1998 .

[39]  P. Gent,et al.  The evolution of sub-mesoscale, coherent vortices on the β-plane , 1986 .

[40]  James C. McWilliams,et al.  A Linear Balance Model of Wind-Driven, Midlatitude Ocean Circulation , 1990 .

[41]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[42]  J. Holton Geophysical fluid dynamics. , 1983, Science.

[43]  Jerrold E. Marsden,et al.  Nonlinear stability of fluid and plasma equilibria , 1985 .

[44]  H. Poincaré Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation , 1885, Bulletin astronomique.

[45]  W. R. Holland,et al.  An accurate hyperbolic system for approximately hydrostatic and incompressible oceanographic flows , 1989 .

[46]  Edward N. Lorenz,et al.  The Slow Manifold—What Is It? , 1992 .

[47]  P. Gent,et al.  Balanced models in isentropic coordinates and the shallow water equations , 1984 .

[48]  Darryl D. Holm,et al.  Self-consistent Hamiltonian dynamics of wave mean-flow interaction for a rotating stratified incompressible fluid , 1996 .

[49]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[50]  D. G. Andrews,et al.  On wave-action and its relatives , 1978, Journal of Fluid Mechanics.

[51]  Darryl D. Holm Averaged Lagrangians and the mean effects of fluctuations in ideal fluid dynamics , 2001 .

[52]  H. Rund Clebsch potentials and variational principles in the theory of dynamical systems , 1977 .

[53]  Darryl D. Holm Hamiltonian balance equations , 1996 .

[54]  Darryl D. Holm,et al.  Hamilton’s principle for quasigeostrophic motion , 1998, chao-dyn/9801018.

[55]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[56]  A. White Modified quasi-geostrophic equations using geometric height as vertical coordinate , 1977 .

[57]  Canonical maps between poisson brackets in eulerian and Lagrangian descriptions of continuum mechanics , 1983 .

[58]  P. Krishnaprasad,et al.  The Euler-Poincaré equations and double bracket dissipation , 1996 .

[59]  J. Crease The Dynamics of the Upper Ocean , 1967 .

[60]  P. Gent,et al.  A numerical model of the balance equations in a periodic domain and an example of balanced turbulence , 1986 .

[61]  H. Poincaré Sur la précession des corps déformables , 1910, Bulletin astronomique.

[62]  J. Marsden,et al.  The Reduced Euler-Lagrange Equations , 1993 .

[63]  Darryl D. Holm,et al.  Extended-geostrophic Hamiltonian models for rotating shallow water motion , 1996 .

[64]  Darryl D. Holm,et al.  Navier-Stokes-alpha model: LES equations with nonlinear dispersion , 2001, nlin/0103036.

[65]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[66]  Jerrold E. Marsden,et al.  Lagrangian Reduction, the Euler{Poincar e Equations, and Semidirect Products , 1999, chao-dyn/9906004.

[67]  Lyapunov stability of ideal stratified fluid equilibria in hydrostatic balance , 1989 .

[68]  E. Lorenz Energy and Numerical Weather Prediction , 1960 .

[69]  P. Gent,et al.  The Evolution of Balanced, Low-Mode Vortices on the β-Plane , 1986 .

[70]  On the Hamiltonian formulation of the quasi‐hydrostatic equations , 1995 .

[71]  J. Allen Balance Equations Based on Momentum Equations with Global Invariants of Potential Enstrophy and Energy , 1991 .

[72]  Qin Xu Semibalance model : connection between geostrophic-type and balanced-type intermediate models , 1994 .