The Euler-Poincaré Equations in Geophysical Fluid Dynamics
暂无分享,去创建一个
[1] Jerrold E. Marsden,et al. Variational principles on principal fiber bundles: A geometry theory of Clebsch potentials and Lin constraints , 1987 .
[2] P. Krishnaprasad,et al. Nonholonomic mechanical systems with symmetry , 1996 .
[3] Darryl D. Holm,et al. Nonlinear stability analysis of stratified fluid equilibria , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[4] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[5] P. Gent,et al. Scaling Analysis of Curved Fronts. Validity of the Balance Equations and Semigeostrophy , 1994 .
[6] J. Marsden,et al. Lagrangian reduction and the double spherical pendulum , 1993 .
[7] H. Poincaré. Sur la Stabilite de l'Equilibre des Figures Pyriformes Affectees par une Masse Fluide en Rotation , 1902 .
[8] J. Barth,et al. On Intermediate Models for Barotropic Continental Shelf and Slope Flow Fields. Part I: Formulation and Comparison of Exact Solutions , 1990 .
[9] Jerrold E. Marsden,et al. The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .
[10] Francis P. Bretherton,et al. A note on Hamilton's principle for perfect fluids , 1970, Journal of Fluid Mechanics.
[11] R. Salmon. New equations for nearly geostrophic flow , 1985, Journal of Fluid Mechanics.
[12] J. Allen,et al. On Intermediate Models for Stratified Flow , 1993 .
[13] Jerrold E. Marsden,et al. Lagrangian Reduction by Stages , 2001 .
[14] J. Barth,et al. On Intermediate Models for Barotropic Continental Shelf and Slope Flow Fields. Part II: Comparison of Numerical Model Solutions in Doubly Periodic Domains , 1990 .
[15] M. Cullen,et al. Properties of the Lagrangian Semigeostrophic Equations , 1989 .
[16] Darryl D. Holm,et al. The Maxwell–Vlasov equations in Euler–Poincaré form , 1998, chao-dyn/9801016.
[17] Darryl D. Holm,et al. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.
[18] Darryl D. Holm,et al. Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow , 1998, chao-dyn/9804026.
[19] Jerrold E. Marsden,et al. Lin constraints, Clebsch potentials and variational principles , 1987 .
[20] A. Weinstein. Hamiltonian structure for drift waves and geostrophic flow , 1983 .
[21] Darryl D. Holm,et al. Poisson brackets and clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity , 1983 .
[22] Darryl D. Holm,et al. Long-time shallow-water equations with a varying bottom , 1997, Journal of Fluid Mechanics.
[23] Brian J. Hoskins,et al. The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations. , 1975 .
[24] Darryl D. Holm,et al. The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.
[25] Jerrold E. Marsden,et al. Hamiltonian structure and Lyapunov stability for ideal continuum dynamics , 1986 .
[26] Darryl D. Holm,et al. Nonlinear stability analysis of inviscid flows in three dimensions: incompressible fluids and barotropic fluids , 1987 .
[27] S. Leibovich,et al. A rational model for Langmuir circulations , 1976, Journal of Fluid Mechanics.
[28] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[29] P. Gent,et al. Intermediate Models of Planetary Circulations in the Atmosphere and Ocean , 1980 .
[30] J. G. Charney,et al. On the Scale of Atmospheric Motions , 1990 .
[31] P. Gent,et al. Consistent balanced models in bounded and periodic domains , 1983 .
[32] J. Pedlosky. Geophysical Fluid Dynamics , 1979 .
[33] B. Cushman-Roisin. Introduction to Geophysical Fluid Dynamics , 1994 .
[34] Jerrold E. Marsden,et al. EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .
[35] P. Gent,et al. Regimes of validity for balanced models , 1983 .
[36] D. G. Andrews,et al. An exact theory of nonlinear waves on a Lagrangian-mean flow , 1978, Journal of Fluid Mechanics.
[37] Jerrold E. Marsden,et al. Hamiltonian systems with symmetry, coadjoint orbits and plasma physics , 1983 .
[38] Toward an extended-geostrophic Euler-Poincare model for mesoscale oceanographic flow , 1998 .
[39] P. Gent,et al. The evolution of sub-mesoscale, coherent vortices on the β-plane , 1986 .
[40] James C. McWilliams,et al. A Linear Balance Model of Wind-Driven, Midlatitude Ocean Circulation , 1990 .
[41] V. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .
[42] J. Holton. Geophysical fluid dynamics. , 1983, Science.
[43] Jerrold E. Marsden,et al. Nonlinear stability of fluid and plasma equilibria , 1985 .
[44] H. Poincaré. Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation , 1885, Bulletin astronomique.
[45] W. R. Holland,et al. An accurate hyperbolic system for approximately hydrostatic and incompressible oceanographic flows , 1989 .
[46] Edward N. Lorenz,et al. The Slow Manifold—What Is It? , 1992 .
[47] P. Gent,et al. Balanced models in isentropic coordinates and the shallow water equations , 1984 .
[48] Darryl D. Holm,et al. Self-consistent Hamiltonian dynamics of wave mean-flow interaction for a rotating stratified incompressible fluid , 1996 .
[49] Darryl D. Holm,et al. The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.
[50] D. G. Andrews,et al. On wave-action and its relatives , 1978, Journal of Fluid Mechanics.
[51] Darryl D. Holm. Averaged Lagrangians and the mean effects of fluctuations in ideal fluid dynamics , 2001 .
[52] H. Rund. Clebsch potentials and variational principles in the theory of dynamical systems , 1977 .
[53] Darryl D. Holm. Hamiltonian balance equations , 1996 .
[54] Darryl D. Holm,et al. Hamilton’s principle for quasigeostrophic motion , 1998, chao-dyn/9801018.
[55] Darryl D. Holm,et al. An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.
[56] A. White. Modified quasi-geostrophic equations using geometric height as vertical coordinate , 1977 .
[57] Canonical maps between poisson brackets in eulerian and Lagrangian descriptions of continuum mechanics , 1983 .
[58] P. Krishnaprasad,et al. The Euler-Poincaré equations and double bracket dissipation , 1996 .
[59] J. Crease. The Dynamics of the Upper Ocean , 1967 .
[60] P. Gent,et al. A numerical model of the balance equations in a periodic domain and an example of balanced turbulence , 1986 .
[61] H. Poincaré. Sur la précession des corps déformables , 1910, Bulletin astronomique.
[62] J. Marsden,et al. The Reduced Euler-Lagrange Equations , 1993 .
[63] Darryl D. Holm,et al. Extended-geostrophic Hamiltonian models for rotating shallow water motion , 1996 .
[64] Darryl D. Holm,et al. Navier-Stokes-alpha model: LES equations with nonlinear dispersion , 2001, nlin/0103036.
[65] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[66] Jerrold E. Marsden,et al. Lagrangian Reduction, the Euler{Poincar e Equations, and Semidirect Products , 1999, chao-dyn/9906004.
[67] Lyapunov stability of ideal stratified fluid equilibria in hydrostatic balance , 1989 .
[68] E. Lorenz. Energy and Numerical Weather Prediction , 1960 .
[69] P. Gent,et al. The Evolution of Balanced, Low-Mode Vortices on the β-Plane , 1986 .
[70] On the Hamiltonian formulation of the quasi‐hydrostatic equations , 1995 .
[71] J. Allen. Balance Equations Based on Momentum Equations with Global Invariants of Potential Enstrophy and Energy , 1991 .
[72] Qin Xu. Semibalance model : connection between geostrophic-type and balanced-type intermediate models , 1994 .