Optimal control for electron shuttling
暂无分享,去创建一个
Loren Greenman | K. Birgitta Whaley | K. B. Whaley | Xiaotian Deng | Jun Zhang | Jun Zhang | Loren Greenman | Ian M. Hayes | I. Hayes | Xiaotian Deng
[1] Gerhard Klimeck,et al. Coherent Electron Transport by Adiabatic Passage in an Imperfect Donor Chain , 2010, 1008.1494.
[2] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[3] Gabriel Turinici,et al. Generalized monotonically convergent algorithms for solving quantum optimal control problems. , 2004, The Journal of chemical physics.
[4] M. Eto,et al. Exchange Coupling in Silicon Double Quantum Dots , 2004 .
[5] Roger W. Brockett. Differential geometric methods in system theory , 1971, CDC 1971.
[6] Herschel Rabitz,et al. A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .
[7] H. Rabitz,et al. Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.
[8] B. Shore,et al. Coherent population transfer among quantum states of atoms and molecules , 1998 .
[9] Yvon Maday,et al. New formulations of monotonically convergent quantum control algorithms , 2003 .
[10] B. E. Kane. A silicon-based nuclear spin quantum computer , 1998, Nature.
[11] H. Sussmann,et al. Control systems on Lie groups , 1972 .
[12] Tommaso Calarco,et al. Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.
[13] A. G. Fowler,et al. Two-dimensional architectures for donor-based quantum computing , 2006 .
[14] Timo O. Reiss,et al. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.
[15] Herschel Rabitz,et al. Monotonically convergent algorithm for quantum optimal control with dissipation , 1999 .
[16] David J. Tannor,et al. Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .
[17] Jacob M. Taylor,et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .
[18] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[19] Michael E. Taylor,et al. Partial Differential Equations , 1996 .
[20] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[21] Andrew D. Greentree,et al. Coherent electronic transfer in quantum dot systems using adiabatic passage , 2004 .
[22] D. DiVincenzo,et al. Quantum computation with quantum dots , 1997, cond-mat/9701055.
[23] John W. Clark,et al. Modelling of quantum mechanical control systems , 1980 .
[24] Constantin Brif,et al. Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations , 2012 .
[25] C. Desoer,et al. Linear System Theory , 1963 .
[26] George M. Siouris,et al. Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[27] V. Jurdjevic. Geometric control theory , 1996 .
[28] S. Sarma,et al. Realizing singlet-triplet qubits in multivalley Si quantum dots , 2009, 0903.0863.
[29] A. Mituś,et al. Model of Qubit in Multi-Electron Quantum Dot , 2001 .
[30] Michael Taylor,et al. Partial Differential Equations I: Basic Theory , 1996 .
[31] R. Kosloff,et al. Optimal control theory for unitary transformations , 2003, quant-ph/0309011.
[32] E. V. Nuttall. ACT , 1986 .
[33] Yan Xu,et al. Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system , 2011 .
[34] Howard Georgi,et al. Lie Algebras in Particle Physics , 1982 .
[35] Mark A. Eriksson,et al. Embracing the quantum limit in silicon computing , 2011, Nature.
[36] G. Feher,et al. Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique , 1959 .
[37] Christiane P Koch,et al. Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.
[38] Jacob M. Taylor,et al. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.
[39] Adele E. Schmitz,et al. Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.
[40] B. E. Kane,et al. Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.
[41] T. Tarn,et al. On the controllability of quantum‐mechanical systems , 1983 .
[42] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[43] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control , 1999 .