Optimal control for electron shuttling

In this paper we apply an optimal control technique to derive control fields that transfer an electron between ends of a chain of donors or quantum dots. We formulate the transfer as an optimal steering problem, and then derive the dynamics of the optimal control. A numerical algorithm is developed to effectively generate control pulses. We apply this technique to transfer an electron between sites of a triple quantum dot and an ionized chain of phosphorus dopants in silicon. Using the optimal pulses for the spatial shuttling of phosphorus dopants, we then add hyperfine interactions to the Hamiltonian and show that a 500 G magnetic field will transfer the electron spatially as well as transferring the spin components of two of the four hyperfine states of the electron-nuclear spin pair.

[1]  Gerhard Klimeck,et al.  Coherent Electron Transport by Adiabatic Passage in an Imperfect Donor Chain , 2010, 1008.1494.

[2]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[3]  Gabriel Turinici,et al.  Generalized monotonically convergent algorithms for solving quantum optimal control problems. , 2004, The Journal of chemical physics.

[4]  M. Eto,et al.  Exchange Coupling in Silicon Double Quantum Dots , 2004 .

[5]  Roger W. Brockett Differential geometric methods in system theory , 1971, CDC 1971.

[6]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[7]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[8]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[9]  Yvon Maday,et al.  New formulations of monotonically convergent quantum control algorithms , 2003 .

[10]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[11]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[12]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[13]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[14]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[15]  Herschel Rabitz,et al.  Monotonically convergent algorithm for quantum optimal control with dissipation , 1999 .

[16]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[17]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Andrew D. Greentree,et al.  Coherent electronic transfer in quantum dot systems using adiabatic passage , 2004 .

[22]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[23]  John W. Clark,et al.  Modelling of quantum mechanical control systems , 1980 .

[24]  Constantin Brif,et al.  Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations , 2012 .

[25]  C. Desoer,et al.  Linear System Theory , 1963 .

[26]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  V. Jurdjevic Geometric control theory , 1996 .

[28]  S. Sarma,et al.  Realizing singlet-triplet qubits in multivalley Si quantum dots , 2009, 0903.0863.

[29]  A. Mituś,et al.  Model of Qubit in Multi-Electron Quantum Dot , 2001 .

[30]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[31]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[32]  E. V. Nuttall ACT , 1986 .

[33]  Yan Xu,et al.  Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system , 2011 .

[34]  Howard Georgi,et al.  Lie Algebras in Particle Physics , 1982 .

[35]  Mark A. Eriksson,et al.  Embracing the quantum limit in silicon computing , 2011, Nature.

[36]  G. Feher,et al.  Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique , 1959 .

[37]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[38]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[39]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[40]  B. E. Kane,et al.  Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.

[41]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[42]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[43]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .